【题目】已知椭圆 (a>b>0)的焦点在圆x2+y2=3上,且离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点O的直线l与椭圆C交于A,B两点,F为右焦点,若△FAB为直角三角形,求直线l的方程.
【答案】(Ⅰ);(Ⅱ)或.
【解析】试题分析:(Ⅰ)由题意可得椭圆的焦点坐标,结合离心率,从而求出椭圆的方程;(Ⅱ)由为直角三角形,对与是否垂直进行讨论,从而分别求出直线的方程.
试题解析:(Ⅰ)因为椭圆的焦点在x轴上,所以焦点为圆x2+y2=3与x轴的交点,即, .
所以.
又离心率,所以a=2.
故所求椭圆方程为.
(Ⅱ)当△FAB为直角三角形时,显然直线l斜率存在,
可设直线l方程为y=kx,设A(x1,y1),B(x2,y2).
(ⅰ)当FA⊥FB时, , .
由
消y得(4k2+1)x2-4=0.
则x1+x2=0, .
解得.
此时直线l的方程为.
(ⅱ)当FA与FB不垂直时,根据椭圆的对称性,不妨设.
所以解得
所以
此时直线l的方程为.
综上,直线l的方程为或.
科目:高中数学 来源: 题型:
【题目】动点P为椭圆 (a>b>0)上异于椭圆顶点A(a,0)、B(﹣a,0)的一点,F1 , F2为椭圆的两个焦点,动圆M与线段F1P、F1F2的延长线级线段PF2相切,则圆心M的轨迹为除去坐标轴上的点的( )
A.抛物线
B.椭圆
C.双曲线的右支
D.一条直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 , .
(1)求函数 的最小正周期;
(2)若 ,且 ,求 的值.
【答案】(1) (2)
【解析】试题分析:(1)根据二倍角公式和两角和差公式得到,进而得到周期;(2)由,得到, ,由配凑角公式得到,代入值得到函数值.
解析:
(1)由题意
=
所以 的最小正周期为 ;
(2)由
又由 得 ,所以
故 ,
故
【题型】解答题
【结束】
20
【题目】为响应十九大报告提出的实施乡村振兴战略,某村庄投资 万元建起了一座绿色农产品加工厂.经营中,第一年支出 万元,以后每年的支出比上一年增加了 万元,从第一年起每年农场品销售收入为 万元(前 年的纯利润综合=前 年的 总收入-前 年的总支出-投资额 万元).
(1)该厂从第几年开始盈利?
(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆上的点到它的两个焦的距离之和为,以椭圆的短轴为直径的圆经过这两个焦点,点, 分别是椭圆的左、右顶点.
()求圆和椭圆的方程.
()已知, 分别是椭圆和圆上的动点(, 位于轴两侧),且直线与轴平行,直线, 分别与轴交于点, .求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知圆O1与圆O2相交于A,B两点,过点A作圆O1的切线交圆O2于点C,过点B作两圆的割线,分别交圆O1 , 圆O2于点D,E,DE与AC相交于点P.
(1)求证:AD∥EC;
(2)若AD是圆O2的切线,且PA=3,PC=1,AD=6,求DB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设实数x,y满足不等式组 ,(2,1)是目标函数z=﹣ax+y取最大值的唯一最优解,则实数a的取值范围是( )
A.(0,1)
B.(0,1]
C.(﹣∞,﹣2)
D.(﹣∞,﹣2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答
(1)在公比为2的等比数列{an}中,a2与a5的等差中项是9 .求a1的值;
(2)若函数y=a1sin( φ),0<φ<π的一部分图象如图所示,M(﹣1,a1),N(3,﹣a1)为图象上的两点,设∠MON=θ,其中O为坐标原点,0<θ<π,求cos(θ﹣φ)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种出口产品的关税税率,市场价格(单位:千元)与市场供应量(单位:万件)之间近似满足关系式:,其中、均为常数.当关税税率为时,若市场价格为5千元,则市场供应量约为1万件;当关税税率为时,若市场价格为7千元,则市场供应量约为2万件.
(1)试确定、的值;
(2)市场需求量(单位:万件)与市场价格近似满足关系式:.当时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com