精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆方程 为: 椭圆的右焦点为 ,离心率为 ,直线 与椭圆 相交于 两点,且
(1)椭圆的方程
(2)求 的面积;

【答案】
(1)解:由已知 ,∴ ,∴

椭圆方程为:


(2)解:设 ,则 的坐标满足

消去 化简得,

,得

,

.

,即

到直线 的距离

,


【解析】(1)由椭圆过一点及离心率两个条件列出关于a,b,c的方程组求a,b,c。
(2)将直线方程和椭圆方程联立成方程组,消去y得关于x的一元二次方程,由韦达定理及弦长公式得到k与m的关系,由弦长公式求弦长。
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线过点P(﹣3 ,4),它的渐近线方程为y=± x.
(1)求双曲线的标准方程;
(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log
(1)求f(x)的定义域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆 上任取一点 ,点 轴的正射影为点 ,当点 在圆上运动时,动点 满足 ,动点 形成的轨迹为曲线
(Ⅰ)求曲线 的方程;
(Ⅱ)点 在曲线 上,过点 的直线 交曲线 两点,设直线 斜率为 ,直线 斜率为 ,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)将函数写成分段函数的形式并画出函数的大致图像

2)求证:函数上是增函数

3)若关于的方程在区间上有两个不相等的实数根求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个函数中,以π为最小正周期,且在区间 上为减函数的是(  )
A.y=2|sinx|
B.y=cosx
C.y=sin2x
D.y=|cosx|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若 时,有成立.

(1)判断上的单调性,并证明;

(2)解不等式

(3)若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家扩大内需的政策,某厂家拟在2016年举行某一产品的促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用t(t≥0)万元满足x=4﹣ (k为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2016年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均生产投入成本的1.5倍(生产投入成本包括生产固定投入和生产再投入两部分).
(1)求常数k,并将该厂家2016年该产品的利润y万元表示为年促销费用t万元的函数;
(2)该厂家2016年的年促销费用投入多少万元时,厂家利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一名大学生尝试开家网店销售一种学习用品,经测算每售出1盒该产品可获利30元,未售出的商品每盒亏损10元.根据统计资料,得到该商品的月需求量的频率分布直方图如图所示,该同学为此购进180盒该产品,以x(单位:盒,100≤x≤200)表示一个月内的市场需求量,y(单位:元)表示一个月内经销该产品的利润.

(1)根据直方图估计这个月内市场需求量x的平均数;

(2)将y表示为x的函数;

(3)根据直方图估计这个月利润不少于3 800元的概率(用频率近似概率).

查看答案和解析>>

同步练习册答案