精英家教网 > 高中数学 > 题目详情
若f(x)=ln(
x2+1
+x)+1,则f(ln2)+f(ln
1
2
)=
 
考点:对数的运算性质
专题:函数的性质及应用
分析:利用对数的运算性质可得f(-x)+f(x)=2,即可得出.
解答: 解:∵f(x)=ln(
x2+1
+x)+1,
∴f(-x)+f(x)=ln(
x2+1
-x)+1+ln(
x2+1
+x)+1=2,
∴f(ln2)+f(ln
1
2
)=f(ln2)+f(-ln2)=2.
故答案为:2.
点评:本题考查了对数的运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

幂函数f(x)=(m2-m-1)xm2+m-3在(0,+∞)上为增函数,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
3
x
+
1
1-3x
,x∈(0,
1
3
)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-
1
2
≤2x+y≤
1
2
,-
1
2
≤3x+y≤
1
2
,求9x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式2x2+x-1>0的解集为(  )
A、(-1,
1
2
B、(-∞,-
1
2
)∪(1,+∞)
C、(-∞,-1)∪(
1
2
,+∞)
D、R

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
的模分别为6和5,夹角为120°,则|
a
+
b
|等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P(2,0),Q(8,0),点M到点P的距离是它到点Q距离的
1
5
,求点M的轨迹方程,并求轨迹上的点到直线l:8x-y-1=0的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
a
x
(a>0)
(1)求函数f(x)的单调区间;
(2)设P(x0,y0)为函数f(x)图象上的任意一点,若当x0∈(0,3]时,点P处的切线的斜率k≤
1
2
恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωπ•cos(ωx+
π
4
)+2sin2ωx+
1
2
,直线y=1-
2
2
与f(x)的图象交点之间的最短距离为π.
(1)求f(x)的解析式及其图象的对称中心;
(2)设△ABC的内角A、B、C的对边分别为a、b、c,若f(
A
2
+
π
8
)=
3
2
,c=4,a+b=4
2
,求△ABC的面积.

查看答案和解析>>

同步练习册答案