精英家教网 > 高中数学 > 题目详情
底面直径为12cm的圆柱被与底面成30°的平面所截,截口是一个椭圆,该椭圆的长轴长    ,短轴长    ,离心率为   
【答案】分析:根据平面与圆柱面的截线及椭圆的性质,可得圆柱的底面直径为12cm,截面与底面成30°,根据截面所得椭圆长轴、短轴与圆柱直径的关系,我们易求出椭圆的长轴长和短轴长,进而得到椭圆的离心率.
解答:解:∵圆柱的底面直径d为12cm,截面与底面成30°
∴椭圆的短轴长2b=d=12cm
椭圆的长轴长2a==8cm
根据得,椭圆的半焦距长C=2cm
则椭圆的离心率e===
故答案为:8cm,12cm,
点评:若与底面夹角为θ平面α截底面直径为d圆柱,则得到的截面必要椭圆,且椭圆的短轴长等于圆柱的底面直径,长轴长等于
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网底面直径为12cm的圆柱被与底面成30°的平面所截,截口是一个椭圆,该椭圆的长轴长
 
,短轴长
 
,离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,底面直径为12cm的圆柱被与底面成30°的平面所截,其截口是一个椭圆,离心率为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,底面直径为12cm的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的离心率为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,底面直径为12cm的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的离心率为______.
精英家教网

查看答案和解析>>

同步练习册答案