精英家教网 > 高中数学 > 题目详情

【题目】△ABC中,角A,B,C的对边分别为a,b,c,且bcosC+ccosB=2acosB.
(1)求角B的大小;
(2)若 ,求△ABC的面积.

【答案】
(1)解:∵bcosC+c cosB=2acosB.

∴由正弦定理得sinBcosC+sinCcosB=2sinAcosBsinA=2sinAcosB,

∵sinA>0,

∵0<B<π,∴


(2)解:∵

∴b2=a2+c2﹣2accosB=a2+c2﹣ac=(a+c)2﹣3ac

即13=16﹣3ac,

解得ac=1,


【解析】(1)利用正弦定理结合两角和差的正弦公式进行化简即可求角B的大小;(2)利用余弦定理求出ac的值,代入三角形的面积公式即可.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(0)=0,f(x)+f(1﹣x)=1,f( )= f(x)且当0≤x1<x2≤1时,f(x1)≤f(x2),则f( )等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在射线y=2x﹣3(x≥0),且与直线y=x+2和y=﹣x+4都相切.
(1)求圆C的方程;
(2)若P(x,y)是圆C上任意一点,求x+2y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设无穷等差数列{an}的前n项和为Sn , 已知a1=1,S3=12.
(1)求a24与S7的值;
(2)已知m、n均为正整数,满足am=Sn . 试求所有n的值构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式(x+5)(3﹣2x)≤6的解集是(
A.{x|x≤﹣1或x }
B.{x|﹣1≤x }?
C.{x|x 或x≥﹣1}
D.{x| ?x≤﹣1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一组数据3,4,5,a,b的平均数是4,中位数是m,从3,4,5,a,b,m这组数据中任取一数,取到数字4的概率为 ,那么3,4,5,a,b这组数据的方差为(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: + =1(a>b>0)过点(2,0),离心率为
(1)求C的方程;
(2)过点(1,0)且斜率为1的直线l与椭圆C相交于A,B两点,求AB的中点M的坐标.

查看答案和解析>>

同步练习册答案