精英家教网 > 高中数学 > 题目详情
已知△ABC中,条件甲:tanA=
2cosC+cosA
2sinC-sinA
,条件乙:△ABC为等边三角形,则甲是乙的(  )
分析:甲:由tanA=
2cosC+cosA
2sinC-sinA
,根据两角和的余弦公式得到∠B=60°;
乙:由于△ABC为等边三角形,则∠A=∠B=∠C=60°.
由于由于甲⇒乙为假命题,乙⇒甲为真命题,则甲是乙的必要不充分条件.
解答:解:甲:在△ABC中,由于tanA=
2cosC+cosA
2sinC-sinA
,则
sinA
cosA
=
2cosC+cosA
2sinC-sinA

整理得:2(cosAcosC-sinAsinC)=-1,即cos(A+C)=-
1
2

又由cos(B)=-cos(A+C)=
1
2
,则∠B=60°;
乙:由于△ABC为等边三角形,则∠A=∠B=∠C=60°.
由于甲⇒乙为假命题,乙⇒甲为真命题,则甲是乙的必要不充分条件.
故选B.
点评:本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断.法1:若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
法2:判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

已知△ABC中,条件甲:tanA=数学公式,条件乙:△ABC为等边三角形,则甲是乙的


  1. A.
    充分不必要条件
  2. B.
    必要不充分条件
  3. C.
    充要条件
  4. D.
    既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC中,条件甲:tanA=
2cosC+cosA
2sinC-sinA
,条件乙:△ABC为等边三角形,则甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源:2013年浙江省杭州市重点高中高考命题比赛数学参赛试卷08(理科)(解析版) 题型:选择题

已知△ABC中,条件甲:tanA=,条件乙:△ABC为等边三角形,则甲是乙的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省杭州市建人高复学校高三(下)第五次质量检测数学试卷(文科)(解析版) 题型:选择题

已知△ABC中,条件甲:tanA=,条件乙:△ABC为等边三角形,则甲是乙的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案