精英家教网 > 高中数学 > 题目详情

【题目】某班同学利用国庆节进行社会实践,对岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳组的人数

占本组的频率

第一组

120

0.6

第二组

195

P

第三组

100

0.5

第四组

a

0.4

第五组

30

0.3

第六组

15

0.3

1)补全频率分布直方图,并求nap的值;

2)求年龄段人数的中位数和众数;(直接写出结果即可)

3)从岁年龄段的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取3人作为领队,求选取的3名领队中年龄都在岁的概率.

【答案】(1);(2)中位数为35,众数为32.5;(3

【解析】

1)求出第二组的频率,由频率除以组距可补全频率直方图,由第一组的人数和频率可求得总人数,由第二组的频率求得第二组的人数,可求得,由第四组的频率可得出第四组的人数,求得.

2)在频率直方图中从左至右找到频率为0.5的数据可得中位数,频率直方图中最高一组的中间值可得众数;

3)由频率直方图得出岁年龄段的低碳族岁年龄段的低碳族的比值,根据分层抽样法得出在中所抽取的人数,再运用古典概型可求得概率.

1)第二组的频率为,所以高为,频率直方图如图:

第一组的人数为,频率为,所以.

由题可知,第二组的频率为0.3,所以第二组的人数为,所以

第四组的频率为,所以第四组的人数为,所以.

所以,

2)中位数为35,众数为32.5

3)因为岁年龄段的低碳族岁年龄段的低碳族的比值为

所以采用分层抽样法抽取6人,岁中有4人,岁中有2.由于从6人中选取3人作领队的所有可能情况共20种,其中从岁中的4人中选取3名领队的情况有4种,故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足x3<y3,则下列不等式中恒成立的是(  )

A. x>(y B. ln(x2+1)>ln(y2+1)

C. D. tanx>tany

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在梯形中,.将梯形所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测量一根新弹簧的劲度系数时,测得了如下的结果:

所挂重量()(x

1

2

3

5

7

9

弹簧长度()(y

11

12

12

13

14

16

1)请在下图坐标系中画出上表所给数据的散点图;

2)若弹簧长度与所挂物体重量之间的关系具有线性相关性,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

3)根据回归方程,求挂重量为的物体时弹簧的长度.所求得的长度是弹簧的实际长度吗?为什么?

注:本题中的计算结果保留小数点后两位.

(参考公式:

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆锥的轴截面是等腰直角三角形,底面半径为1,点是圆心,过顶点的截面与底面所成的二面角大小是.

1)求点到截面的距离;

2)点为圆周上一点,且中点,求异面直线所成角的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 ,和两点0,1),-1,0),给出如下结论:

①不论为何值时, 都互相垂直;

②当变化时, 分别经过定点A0,1)和B-1,0);

③不论为何值时, 都关于直线对称;

④如果交于点,则的最大值是1

其中,所有正确的结论的个数是(

A. 1 B. 2 C. 3 D. 4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足:①对一切恒有;②对一切恒有;③当时,,且;④若对一切(其中),不等式恒成立.

(1)的值;

(2)证明:函数上的递增函数;

(3)求实数的取值范围.

查看答案和解析>>

同步练习册答案