精英家教网 > 高中数学 > 题目详情
6.函数$f(x)=\frac{1}{{ln({3x+1})}}$的定义域是(  )
A.$({-\frac{1}{3},+∞})$B.$({-\frac{1}{3},0})∪({0,+∞})$C.$[{-\frac{1}{3},+∞})$D.[0,+∞)

分析 由对数函数的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{3x+1≠1}\\{3x+1>0}\end{array}\right.$,
解得:x>-$\frac{1}{3}$且x≠0,
故选:B.

点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.数列{an}中,已知a1=1,若${a_n}-{a_{n-1}}=2(n≥2且n∈{N^*})$,则an=2n-1,若$\frac{a_n}{{{a_{n-1}}}}=2(n≥2且n∈{N^*})$,则an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正三棱柱ABC-A1B1C1的底面边长为2cm,高为4cm,则一质点自点A出发,沿着三棱柱的侧面,绕行两周到达点A1的最短路线的长为(  )
A.4$\sqrt{10}$cmB.12$\sqrt{3}$cmC.2$\sqrt{13}$cmD.13cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex,g(x)=-x2+2x-af(x)(a∈R),x1,x2是两个任意实数且x1≠x2
(1)求函数f(x)的图象在x=0处的切线方程;
(2)若函数g(x)在R上是增函数,求a的取值范围;
(3)求证:$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且抛物线y2=4$\sqrt{3}$x的焦点恰好使椭圆C的一个焦点.
(1)求椭圆C的方程
(2)过点D(0,3)作直线l与椭圆C交于A,B两点,点N满足$\overrightarrow{ON}$=$\overrightarrow{OA}+\overrightarrow{OB}$(O为原点),求四边形OANB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=sin2xcos2φ+cos2xsin2φ(φ>0)的图象关于直线x=$\frac{π}{3}$对称,则φ 的最小值为$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,BC=2,AC-AB=1,△ABC的面积为$\sqrt{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{13}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知定义在R上的偶函数f(x),当x≥0时,f(x)=x2-4x
(1)求f(-2)的值;
(2)当x<0时,求f(x)的解析式;
(3)设函数f(x)在[t-1,t+1](t>1)上的最大值为g(t),求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若两个集合{1,a},{a2}满足{1,a}∪{a2}={1,a}则实数a=-1或0.

查看答案和解析>>

同步练习册答案