【题目】如图,已知在长方体中,,点为上的一个动点,平面与棱交于点,给出下列命题:
①四棱锥的体积为;
②存在唯一的点,使截面四边形的周长取得最小值;
③当点不与,重合时,在棱上均存在点,使得平面
④存在唯一一点,使得平面,且
其中正确的命题是_____________(填写所有正确的序号)
【答案】①②④
【解析】
①根据,再根据等体积转化,求出和,得到答案;②判断出截面四边形为平行四边形,将正方体侧面展开,面和面在同一平面内,得到最小为内的长度,从而得到截面四边形的周长的最小值;③取为中点时,在平面中,延长,交于,可得;④以点建立空间直角坐标系,根据线面垂直,得到点坐标,并求出.
长方体中,
命题①,
易知平面
到平面的距离,等于到平面的距离,为,
同理到平面的距离,等于到平面的距离,为
所以
,故正确.
命题②,易知平面平面,
平面平面,平面平面
所以,同理,
即四边形为平行四边形
将正方体侧面展开,面和面在同一平面内,
可得在内,最小为的长度,
此时点为与的交点,
所以四边形的周长取得最小值,故正确.
命题③,取为中点时,易知为中点
在平面中,延长,交于,
通过,得到,
所以,
即此时平面,
而此时点在延长线上,不在棱上,故错误.
命题④,以点建立空间直角坐标系,设点
,,
所以,即,
要使平面,
则需,即
所以,得,即,故正确.
故答案为:①②④
科目:高中数学 来源: 题型:
【题目】英国统计学家E.H.辛普森1951年提出了著名的辛普森悖论,下面这个案例可以让我们感受到这个悖论.有甲乙两名法官,他们都在民事庭和行政庭主持审理案件,他们审理的部分案件被提出上诉.记录这些被上述案件的终审结果如下表所示(单位:件):
法官甲 | 法官乙 | ||||||
终审结果 | 民事庭 | 行政庭 | 合计 | 终审结果 | 民事庭 | 行政庭 | 合计 |
维持 | 29 | 100 | 129 | 维持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合计 | 32 | 118 | 150 | 合计 | 100 | 25 | 125 |
记甲法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,和,记乙法官在民事庭、行政庭以及所有审理的案件被维持原判的比率分别为,和,则下面说法正确的是
A. ,,B. ,,
C. ,,D. ,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某条公共汽车线路收支差额与乘客量的函数关系如下图所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)不改变车票价格,减少支出费用;建议(2)不改变支出费用,提高车票价格.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )
A.①反映建议(2),③反映建议(1)B.①反映建议(1),③反映建议(2)
C.②反映建议(1),④反映建议(2)D.④反映建议(1),②反映建议(2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列的前项和为且满足,(为常数,).
(1)求;
(2)若数列是等比数列,求实数的值;
(3)是否存在实数,使得数列满足:可以从中取出无限多项并按原来的先后次序排成一个等差数列?若存在,求出所有满足条件的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况单位:百元,相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:
组别 | |||||
频数 | 10 | 390 | 400 | 188 | 12 |
求所得样本的中位数精确到百元;
根据样本数据,可近似地认为市民的旅游费用支出服从正态分布,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;
若年旅游消费支出在百元以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X的分布列与数学期望.
参考数据:,;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,为其焦点,为其准线,过任作一条直线交抛物线于两点,、分别为、在上的射影,为的中点,给出下列命题:
(1);(2);(3);
(4)与的交点的轴上;(5)与交于原点.
其中真命题的序号为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为信号源点,、、是三个居民区,已知、都在的正东方向上,,,在的北偏西45°方向上,,现要经过点铺设一条总光缆直线(在直线的上方),并从、、分别铺设三条最短分支光缆连接到总光缆,假设铺设每条分支光缆的费用与其长度的平方成正比,比例系数为1元/,设,(),铺设三条分支光缆的总费用为(元).
(1)求关于的函数表达式;
(2)求的最小值及此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下列联表:
男生 | 女生 | 合计 | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
总计 | 50 | 50 | 100 |
Ⅰ从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;
Ⅱ根据以上列联表,是否有以上的把握认为“性别与在选择座位时是否挑同桌”有关?
下面的临界值表供参考:
参考公式: ,其中
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com