精英家教网 > 高中数学 > 题目详情
14.已知两正数x,y 满足x+y=1,则z=$(x+\frac{1}{x})(y+\frac{1}{y})$的最小值为(  )
A.$\frac{33}{4}$B.$\frac{25}{4}$C.$\frac{1}{4}$D.$\frac{{\sqrt{17}}}{4}$

分析 展开,并根据x+y=1可以得到$z=xy+\frac{2}{xy}-2$,可令t=xy,并求出$t∈(0,\frac{1}{4}]$,而根据$f(t)=t+\frac{2}{t}$的单调性即可求出f(t)的最小值,进而求出z的最小值.

解答 解:z=$(x+\frac{1}{x})(y+\frac{1}{y})$
=$xy+\frac{1}{xy}+\frac{y}{x}+\frac{x}{y}$
=$xy+\frac{1}{xy}+\frac{(x+y)^{2}-2xy}{xy}$
=$xy+\frac{2}{xy}-2$;
令t=xy,则$0<t=xy≤{(\frac{x+y}{2})^2}=\frac{1}{4}$;
由$f(t)=t+\frac{2}{t}$在$({0,\frac{1}{4}}]$上单调递减,故当t=$\frac{1}{4}$时 $f(t)=t+\frac{2}{t}$有最小值$\frac{33}{4}$,
即:$x=y=\frac{1}{2}$时z有最小值$\frac{25}{4}$.
故选B.

点评 考查基本不等式的应用,注意等号成立的条件,要熟悉函数$f(x)=x+\frac{a}{x}(a>0)$的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1的交点,已知AA1=AB=2,∠BAD=60°;
(1)求证:平面A1BC1⊥平面B1BDD1
(2)求点O到平面BC1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\int_1^2{\frac{{{x^2}+1}}{x}}dx$=$\frac{3}{2}$+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=ax-blnx,曲线y=f(x)在点(1,f(1))处的切线方程为y=x+1.
(1)求函数f(x)单调区间;
(2)对任意x≥1,f(x)≥kx恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将一个总数为A、B、C三层,其个体数之比为5:3:2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取(  )个个体.
A.20B.30C.40D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图一个水平放置的无盖透明的正方体容器,高12cm,将一个球放在容器口,在向容器内注水,当球面恰好接触水面时测得水深为8cm,如果不计容器厚度,则球的体积为$\frac{2197π}{6}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.为了了解参加运动会的2 000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有④⑥.
①2 000名运动员是总体;
②每个运动员是个体;
③所抽取的20名运动员是一个样本;
④样本容量为20;
⑤这个抽样方法可采用随机数表法抽样;
⑥每个运动员被抽到的机会相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,AD∥BC,AB⊥AD,PA⊥平面ABCD,点E在BC上,BC=2AB=2AD=4BE.
(1)求证:平面PED⊥平面PAC;
(2)若直线PE与平面PAC所成的角的正弦值为$\frac{{\sqrt{5}}}{5}$,求二面角A-PC-D的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\frac{π}{3}$是函数f(x)=2cos2x+asin2x+1的一个零点.
(Ⅰ)求实数a的值;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案