精英家教网 > 高中数学 > 题目详情
方程|sinx|=kx(k>0)有且仅有两个不同的非零实数解θ,Φ(θ>Φ),则以下有关两根关系的结论正确的是(  )
A、sinΦ=Φcosθ
B、sinΦ=-Φcosθ
C、cosΦ=θsin
D、sinθ=-θsinΦ
考点:函数的零点与方程根的关系
专题:计算题,作图题,函数的性质及应用,导数的综合应用
分析:由题意,函数y=|sinx|与y=kx(k>0)有且仅有两个不同的交点,作图可知y=kx与y=-sinx在[π,2π]上相切;从而求解.
解答: 解:∵方程|sinx|=kx(k>0)有且仅有两个不同的非零实数解θ,Φ(θ>Φ),
∴函数y=|sinx|与y=kx(k>0)有且仅有两个不同的交点,如下图,

则y=kx与y=-sinx在[π,2π]上相切;
故y′=-cosx,故y′=-cosθ;
由联立方程得,
y=sinx
y=-cosθx

解得,sinφ=-φcosθ;
故选B.
点评:本题考查了函数的图象的应用及导数的综合应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的半径为3,圆心C在直线2x+y=0上且在x轴的下方,x轴被圆C截得的弦长BD为2
5

(1)求圆C的方程;
(2)若圆E与圆C关于直线2x-4y+5=0对称,P(x,y)为圆E上的动点,求
(x-1)2+(y+2)2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2+ax+4-a2=0有一正一负两根,命题q:函数y=(a-1)x+1为增函数,若“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求解
x3-26x2+160x-288=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若角α的终边落在直线y=-x上,则角α构成的集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若2x=8Y+1且9y=3x-9,则x+y的值是(  )
A、18B、24C、21D、27

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC的三个内角A,B,C对边分别是a,b,c,且
a
cosA
=
b+c
cosB+cosC

(1)若a=2,△ABC的面积为
3
,求b;
(2)若∠B是△ABC的最大内角,求sinB-cosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+sinπx-3,则f(
1
2015
)+f(
2
2015
)+f(
3
2015
)+…+f(
4029
2015
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
|x|≤
π
2
|y|≤1
,则点(x,y)在函数f(x)=
-x-1(-1≤x<0)
cosx(0≤x<
π
2
)
的图象与坐标轴所围成的封闭图形的内部的概率为(  )
A、
3
B、
1
C、
3
D、
1

查看答案和解析>>

同步练习册答案