精英家教网 > 高中数学 > 题目详情

【题目】中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉祥物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛、马和羊,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,则让三位同学选取的礼物都满意的概率是( )

A.B.C.D.

【答案】C

【解析】

对甲分甲选牛或羊作礼物、甲选马作礼物,利用分步计数原理和分类计数原理计算出事件“三位同学都选取了满意的礼物”所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率.

若甲选牛或羊作礼物,则乙有种选择,丙同学有种选择,此时共有种;

若甲选马作礼物,则乙有种选择,丙同学有种选择,此时共有.

因此,让三位同学选取的礼物都满意的概率为.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】心理学研究表明,人极易受情绪的影响,某选手参加74胜制的兵乒球比赛.

1)在不受情绪的影响下,该选手每局获胜的概率为;但实际上,如果前一句获胜的话,此选手该局获胜的概率可提升到;而如果前一局失利的话,此选手该局获胜的概率则降为,求该选手在前3局获胜局数的分布列及数学期望;

2)假设选手的三局比赛结果互不影响,且三局比赛获胜的概率为,记为锐角的内角,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且sin2A+sin2B+sin2CsinAsinB+sinBsinC+sinCsin A

1)证明:△ABC是正三角形;

2)如图,点D在边BC的延长线上,且BC2CDAD,求sinBAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为贯彻执行党中央不忘初心,牢记使命主题教育活动,增强企业的凝聚力和竞争力。某重装企业的装配分厂举行装配工人技术大比武,根据以往技术资料统计,某工人装配第n件工件所用的时间(单位:分钟)大致服从的关系为kM为常数).已知该工人装配第9件工件用时20分钟,装配第M件工件用时12分钟,那么可大致推出该工人装配第4件工件所用时间是(

A.40分钟B.35分钟C.30分钟D.25分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若.

(ⅰ)求曲线在点处的切线方程;

(ⅱ)求函数在区间内的极大值的个数.

(2)若内单调递减,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了了解年研发资金投人量(单位:亿元)对年销售额(单位:亿元)的影响.对公司近年的年研发资金投入量和年销售额的数据,进行了对比分析,建立了两个函数模型:①,②,其中均为常数,为自然对数的底数.并得到一些统计量的值.,经计算得如下数据:

1)请从相关系数的角度,分析哪一个模型拟合程度更好?

2)()根据(1)的选择及表中数据,建立关于的回归方程;

)若下一年销售额需达到亿元,预测下一年的研发资金投入量是多少亿元?

附:①相关系数

回归直线中公式分别为:

②参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1),求的单调区间;

(2)存在三个极值点,且,求的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为平面内一定点,动点为平面内曲线上的任意一点,且满足,过原点的直线交曲线两点.

1)证明:直线与直线的斜率之积为定值;

2)设直线交直线两点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在区间,使得,则称函数可等域函数,区间为函数的一个可等域区间.给出下列4个函数:

其中存在唯一可等域区间可等域函数为( )

(A)①②③ (B)②③ (C)①③ (D)②③④

查看答案和解析>>

同步练习册答案