【题目】在某省举办的娱乐节目“快乐向前冲”的海选过程中设置了几名导师,负责对每批初选合格的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,不超过40分的选手将直接被淘汰,成绩在内的选手可以参加“待定”赛,如果通过,也可以参加第二轮比赛.
(1)已知成绩合格的200名参赛选手成绩的频率分布直方图如图,估计这200名参赛选手的成绩平均数和中位数;
(2)根据已有的经验,参加“待定”赛的选手能够进入第二轮比赛的概率如下表:
参赛选手成绩所在区间 | ||
每名选手能够进入第二轮的概率 |
假设每名选手能否通过“待定”赛相互独立,现有4名选手的成绩分别为(单位:分)43,45,52,58,记这4名选手在“待定”赛中通过的人数为随机变量,求的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面底面,,为中点,底面是直角梯形,,,,.
(1)求证:平面;
(2)求证:平面平面;
(3)设为棱上一点,,试确定的值使得二面角为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个不透明的箱子里放有四个质地相同的小球,四个小球标的号码分别为1,1,2,3.现甲、乙两位同学依次从箱子里随机摸取一个球出来,记下号码并放回.
(Ⅰ)求甲、乙两位同学所摸的球号码相同的概率;
(Ⅱ)求甲所摸的球号码大于乙所摸的球号码的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下有五个步骤:①拨号;②提起话筒(或免提功能);③开始通话或挂机(线路不通);④等复话方信号;⑤结束通话.试写出一个打本地电话的算法________.(只写编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD的底面ABCD为直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE∥平面PAD;
(2)若AP=2AB,求证:BE⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①综合法是执因导果法;②综合法是顺推法;③分析法是执果索因法;④分析法是间接证法;⑤反证法是逆推法.其中正确说法的个数为
A. 2 B. 3
C. 4 D. 5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.
(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;
(Ⅱ)估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(Ⅲ)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 2 | 3 | 2 | 7 |
表中的数据显示,与之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.
回归直线的斜率和截距的最小二乘估计公式分别为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com