【题目】已知函数.
(1)当时,求函数在区间上的最值;
(2)若函数在上是单调函数,求实数的取值范围;
(3)若不等式在区间上恒成立,求的最小值.
【答案】(1)函数的最大值为,函数的最小值为;(2)或;(3)1.
【解析】
(1)求,判断在区间上的单调性,即求函数在区间上的最值;
(2)函数在上是单调函数,则或在上恒成立,即得实数的取值范围;
(3)求出.分,,三种情况讨论,求出不等式在区间上恒成立时,实数的取值范围,即求的最小值.
(1)当时,,,
0 | |||||
极小值 | |||||
0 | 单减 | 单增 |
显然,
则函数的最大值为,函数的最小值为;
(2)当函数在上单调递增时,
当且仅当,即恒成立,得;
当函数在上单调递减时,
当且仅当,即恒成立,得;
综上,若函数在上是单调函数,实数的取值范围为或;
(3),且,
当时,在区间上,得;
当时,在区间上,得恒成立;
当时,由,故存在,
使得成立,
同时在区间上,,在区间上单调递减,
,所以在区间上小于零.
综上,不等式在区间恒成立时,.
的最小值为1.
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,上顶点为,右顶点为.若(为坐标原点)的三个内角大小成等差数列.
(1)求椭圆的离心率;
(2)直线与椭圆交于两点,设直线,若面积的最大值为,且该椭圆短轴长小于焦距,求椭圆的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点在轴负半轴上,以为边做菱形,且菱形对角线的交点在轴上,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点,其中,作曲线的切线,设切点为,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学调查防疫期间学生居家每天锻炼时间情况,从高一、高二年级学生中分别随机抽取100人,由调查结果得到如下的频率分布直方图:
(Ⅰ)写出频率分布直方图(高一)中的值;记高一、高二学生100人锻炼时间的样本的方差分别为,,试比较,的大小(只要求写出结论);
(Ⅱ)估计在高一、高二学生中各随机抽取1人,恰有一人的锻炼时间大于20分钟的概率;
(Ⅲ)由频率分布直方图可以认为,高二学生锻炼时间服从正态分布.其中近似为样本平均数,近似为样本方差,且每名学生锻炼时间相互独立,设表示从高二学生中随机抽取10人,其锻炼时间位于的人数,求的数学期望.
注:①同一组数据用该区间的中点值作代表,计算得
②若,则,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC中,角A,B,C所对应的分别为a,b,c,且(a+b)(sinA﹣sinB)=(c﹣b)sinC,若a=2,则△ABC的面积的最大值是( )
A.1B.C.2D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(I)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率):
①;
②;
③.
判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.
(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.
①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望;
②从样本中随意抽取2个零件,求其中次品个数的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分,(1)小问7分,(2)小问5分)
设函数
(1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程;
(2)若在上为减函数,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.某市2019年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:
薪资 岗位 | ||||
数据开发 | ||||
数据分析 | ||||
数据挖掘 | ||||
数据产品 |
由表中数据可得该市各类岗位的薪资水平高低情况为( )
A.数据挖掘>数据开发>数据产品>数据分析
B.数据挖掘>数据产品>数据开发>数据分析
C.数据挖掘>数据开发>数据分析>数据产品
D.数据挖掘>数据产品>数据分析>数据开发
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com