精英家教网 > 高中数学 > 题目详情

【题目】如图,在五棱锥中,平面平面,且

1已知点在线段上,确定的位置,使得平面

2分别在线段上,若沿直线将四边形向上翻折,恰好重合,求三棱锥的体积.

【答案】1为靠近的三等分点2.

【解析】

试题分析:1本题的五棱锥的底面可视为正方形折起一个角,先由线线平行推得面面平行,从而得到线面平行2先由面面垂直得到线面垂直和线线垂直,由翻折后重合,即求出的长度,所求的三棱锥体积,以三角形为底,为高,代入体积公式.

试题解析:解:1为靠近的三等分点,

在线段取一点,使得,连结

四边形为平行四边形,

为靠近的三等分点,

平面平面,而平面平面

2连接,根据条件可以求得,又

的中点,连接,又平面平面

平面

翻折后,重合,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:

文艺节目

新闻节目

总计

20至40岁

40

18

58

大于40岁

15

27

42

总计

55

45

100

(1)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?

(2)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数上的最小值;

(II)若函数的图象恰有一个公共点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)

(1)求

(2)若从高校抽取的人中选2人作专题发言,求这二人都来自高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求的展开式中的系数及展开式中各项系数之和;

(2)从0,2,3,4,5,6这6个数字中任取4个组成一个无重复数字的四位数,求满足条件的四位数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,求函数的单调区间;

2时,若对任意恒成立,求实数的取值范围;

3设函数的图象在两点处的切线分别为,若,且,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱正方形,菱形,平面.

1

2分别中点,试判断直线平面位置关系,并说明理由;

3二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场销售某件商品的经验表明,该商品每日的销量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数。已知销售价格为5元/千克时,每日可售出该商品11千克

)求实数的值;

)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理是合情推理的是 ( )

①由圆的性质类比出球的有关性质

②由直角三角形、等腰三角形、等边三角形内角和是180°归纳出所有三角形的内角和都是180°

③某次考试张军成绩是100分,由此推出全班同学成绩都是100分

④数列1,0,1,0,…,推测出每项公式

A. ①② B. ①③④ C. ①②④ D. ②④

查看答案和解析>>

同步练习册答案