精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体已知EFGH分别是A1D1B1C1D1DC1C的中点

(1)求证:EF∥平面ABHG

(2)求证:平面ABHG⊥平面CFED

【答案】(1)见解析(2)见解析

【解析】

试题分析:(1)由的中点,可得,从而可得,根据线面平行的判定定理可得结论;(2)根据线面垂直的性质可得,根据相似三角形的性质可得,从而根据线面垂直的判定定理可得平面进而根据面面垂直的判定定理可得结论.

试题解析:(1)因为EFA1D1B1C1的中点,所以,在正方体中,A1B1AB,所以 平面ABHGAB平面ABHG,所以EF∥平面ABHG,

(2)在正方体ABCDA1B1C1D1中,CD 平面BB1C1C,又平面,所以.① BCH≌△,所以,因为∠HBC+PHC=90,所以+PHC=90

所以,即.② ①②,DCCF平面CFED

所以平面CFED.又平面ABHG,所以平面ABHG⊥平面CFED

【方法点晴】本题主要考查线面平行的判定定理、面面垂直的判定定理,属于中档题 . 证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知线段AB的两个端点AB分别在x轴和y轴上滑动,且∣AB∣=2

(1)求线段AB的中点P的轨迹C的方程;

(2)求过点M(1,2)且和轨迹C相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】进入春天,大气流动性变好,空气质量随之提高,自然风光越来越美,自驾游乡村游也就越来越热.某旅游景区试图探究车流量与景区接待能力的相关性,确保服务质量和游客安全,以便于确定是否对进入景区车辆实施限行.为此,该景区采集到过去一周内某时段车流量与接待能力指数的数据如表:

时间

周一

周二

周三

周四

周五

周六

周日

车流量(x千辆)

10

9

9.5

10.5

11

8

8.5

接待能力指数y

78

76

77

79

80

73

75

I)根据表中周一到周五的数据,求y关于x的线性回归方程.

(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为该线性回归方程是可靠的.请根据周六和周日数据,判定所得的线性回归方程是否可靠?

附参考公式及参考数据:线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ab为常数,a0,函数

1)若a=2b=1,求在(0+∞)内的极值;

2a>0b>0,求证:在区间[12]上是增函数;

,且在区间[12]上是增函数,求由所有点形成的平面区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名观众进行调查,其中有名男观众和名女观众,将这名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在分钟以上(包括分钟)的称为“朗读爱好者”,收视时间在分钟以下(不包括分钟)的称为“非朗读爱好者”.

(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取名,再从这名观众中任选名,求至少选到名“朗读爱好者”的概率;

(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图B,C分别是海岸线上的两个城市两城市间由笔直的海滨公路相连BC之间的距离为100km,海岛A在城市B的正东方50从海岛A到城市C,先乘船按北偏西θ角(其中锐角的正切值为)航行到海岸公路P处登陆,再换乘汽车到城市C已知船速为25km/h,车速为75km/h.

(1)试建立由APC所用时间与的函数解析式

(2)试确定登陆点P的位置,使所用时间最少,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某中学甲、乙两班各随机抽取 名同学,测量他们的身高(单位: ),所得数据用茎叶图表示如下,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是( )

A. 甲班同学身高的方差较大 B. 甲班同学身高的平均值较大

C. 甲班同学身高的中位数较大 D. 甲班同学身高在 以上的人数较多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8.

1)请将两家公司各一名推销员的日工资 (单位: ) 分别表示为日销售件数的函数关系式;

2)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图.若将该频率视为概率,分别求甲、乙两家公司一名推销员的日工资超过125元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.

1)证明:平面.

2)若三棱锥的体积为4,求点到平面的距离.

查看答案和解析>>

同步练习册答案