精英家教网 > 高中数学 > 题目详情
函数f(x)对于任意实数x满足条件f(x+4)=
1
f(x)
,且当x∈[2,10)时,f(x)=log2(x-1),则f(2010)+f(2011)的值为(  )
A、-2B、-1C、1D、2
分析:先通过f(x+4)=
1
f(x)
可推断函数f(x)是以8为周期的函数,然后由函数周期性可得f(2 010)+f(2 011)=f(2)+f(3),代入可求.
解答:解:由f(x+4)=
1
f(x)
得f[(x+8)]=
1
f(x+4)
=f(x),T=8
∵x∈[2,10),f(x)=log2(x-1)
∴f(2010)+f(2011)=f(2)+f(3)
=log21+log2(3-1)=1.
故答案为:1
点评:本题考查了函数的周期的运用,及转化的思想在解题中的运用,解答本题的关键是熟练掌握函数的性质及一些常用的反映函数性质的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对于任意的x都有f(x+2)=f(x+1)-f(x)且f(1)=lg3-lg2,f(2)=lg3+lg5,则f(2010)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域在R上的函数f(x)对于任意的x,y有f(x+y)=f(x)+f(y)成立,且f(2)=3,当x>0时,f(x)>0.
(1)判断并证明函数f(x)的单调性和奇偶性;
(2)解不等式:f(|x-5|)-6<f(|2x+3|).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对于任意x,y∈R,都有f(x+y)=f(x)+f(y).且f( 1 )=
1
9
,给出如下命题:
①f(0)=0;②对于任意的x,都有f(2x)=2f(x);③f(x)是奇函数;④对任意的x1<x2,都有f(x1)<f(x2);⑤函数f(x)的值域也是R.你认为正确命题的序号有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对于任意的x∈R,导函数f′(x)都存在,且满足
1-x
f′(x)
≤0
,则必有(  )

查看答案和解析>>

同步练习册答案