精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调性;

(2)若存在,使得,试求的取值范围.

【答案】(1) 上单调递减,在上单调递增;(2) .

【解析】试题分析:(1)先求函数导数(较复杂),再对导函数求导(恒正),从而导函数单调递增,而导函数有一零点 ,所以导函数符号变化规律可定,最后根据导函数符号确定单调性,(2) 原题意等价于,而由(1)可得函数最小值为,最大值为,从而本题关键判断大小,构造差函数,利用导数研究函数单调性,根据差函数的导函数单调递增,且,可分类讨论大小关系,最后解出的取值范围.

试题解析:(1),设,则,所以上单调递增,又因为,故有唯一解,所以的变化情况如下表所示:

递减

极小值

递增

所以上单调递减,在上单调递增.

(2) 因为存在,使得,所以当时,.由(1)知,上递减,在上递增,所以当时, ,而

,记,

因为(当时取等号), 所以上单调递增.而,故当时,;当时,. ①当时,由,得,得; ②当时,由,得,得, 综上可知,所求取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆与圆 的公共点的轨迹为曲线,且曲线轴的正半轴相交于点.若曲线上相异两点满足直线的斜率之积为

1)求的方程;

2)证明直线恒过定点,并求定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12) ABC中,abc分别为角ABC的对边,且

1)求的度数;

2)若,求bc的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图当输入的x的值为04输出的值相等根据该图和下列各小题的条件解答下面的几个问题.

(1)该程序框图解决的是一个什么问题?

(2)当输入的x的值为3求输出的f(x)的值;

(3)要想使输出的值最大求输入的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数

(1)当时,求上的单调区间;

(2)设函数,当有两个极值点时,总有,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个树形图依据下列规律不断生长,1个空心圆点到下一行仅生长出1个实心圆点,1个实心圆点到下一行生长出1个实心圆点和1个空心圆点,则第11行的实心圆点的个数是

A. 21 B. 34 C. 55 D. 89

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱打篮球

不喜爱打篮球

合计

男生

5

女生

10

合计

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有99%的把握认为喜爱打篮球与性别有关?说明你的理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为

(Ⅰ)请将上述列联表补充完整,并判断是否有的把握认为喜欢游泳与性别有关?并说明你的理由;

(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.

参考公式:,其中

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为招聘新员工设计了一个面试方案:应聘者从6道备选题中一次性随机抽取3道题,按题目要求独立完成.规定:至少正确完成其中2道题的便可通过.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.

(1)分别求甲、乙两人正确完成面试题数的分布列及数学期望;

(2)请分析比较甲、乙两人谁面试通过的可能性大?

查看答案和解析>>

同步练习册答案