精英家教网 > 高中数学 > 题目详情


空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,若EF=
3
,求异面直线AD、BC所成角的大小.
分析:设G为AC的中点,由已知中AD=BC=2,E、F分别是AB、CD的中点,若EF=
3
,根据三角形中位线定理,我们易求出∠EGF为异面直线AD、BC所成的角(或其补角),解三角形EGF即可得到答案.
解答:解:设G为AC的中点,∵E、F分别是AB、CD中点
∴EG∥BC且EG=
1
2
BC=1

FG∥AD且FG=
1
2
AD=1

∴∠EGF为异面直线AD、BC所成的角(或其补角)
EF=
3

∴△EGF中,cos∠EGF=-
1
2

∴∠EGF=120°,
即异面直线AD、BC所成的角为60°
点评:本题考查的知识点是异面直线及其所成的角,其中根据已知三角形中位线定理得到∠EGF为异面直线AD、BC所成的角(或其补角),是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知空间四边形ABCD中,BC=AC,AD=BD,E是AB的中点.
求证:
(1)AB⊥平面CDE;
(2)平面CDE⊥平面ABC;
(3)若G为△ADC的重心,试在线段AE上确定一点F,使得GF∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,EF=
2
,求AD与BC所成角的大小(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,空间四边形ABCD中,AB、BC、CD的中点分别是P、Q、R,且PQ=
3
,QR=1,PR=2
,那么异面直线BD和PR所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

空间四边形ABCD中,AB=CD,且AB与CD成60°角,E、F分别为AC,BD的中点,则EF与AB所成角的度数为
60°或30°
60°或30°

查看答案和解析>>

同步练习册答案