精英家教网 > 高中数学 > 题目详情

【题目】将一个骰子连续抛掷三次,它落地时向上的点数能组成成等差数列的概率为( )

A. B. C. D.

【答案】A

【解析】分析:将一个骰子连续抛掷三次,每次都有种情况,由分步计数原理可得共有种情况,、分两种情况讨论骰子落地时向上的点数能组成等差数列的情况,可得符合条件的情况数目,由古典概型概率公式可得结果.

详解根据题意,将一个骰子连续抛掷三次,每次都有种情况,

则共有种情况,

它落地时向上的点数能组成等差数列,分两种情况讨论:

①若落地时向上的点数若不同,

则为,共有种可能,

每种可能的点数顺序可以颠倒,即有种情况,

共有种情况;

②若落地时向上的点数全相同,有种情况,

共有种情况,

落地时向上的点数能组成等差数列的概率为,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知abc∈(0+∞).

1)若a=6b=5c=4ABCBCCAAB的长,证明:cosAQ

2)若abc分别是ABCBCCAAB的长,若abcQ时,证明:cosAQ

3)若存在λ∈(-22)满足c2=a2+b2ab,证明:abc可以是一个三角形的三边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线C由上半椭圆C1 =1(a>b>0,y≥0)和部分抛物线C2:y=﹣x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为

(1)求a,b的值;
(2)过点B的直线l与C1 , C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,证明.

(2)令,若时,恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲、乙两个项目,对甲项目每投资10万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p(0<p<1),设乙项目产品价格在一年内进行两次独立的调整.记乙项目产品价格在一年内的下降次数为X,对乙项目每投资10万元,X取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量X1X2分别表示对甲、乙两项目各投资10万元一年后的利润.

(1)求X1X2的概率分布和均值E(X1),E(X2);

(2)当E(X1)<E(X2)时,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果的三个内角的正弦值分别等于的三个内角的余弦值,则下列正确的是( )

A. 都是锐角三角形

B. 都是钝角三角形

C. 是锐角三角形且是钝角三角形

D. 是钝角三角形且是锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的增函数.当实数取最大值时,若存在点,使得过点的直线与曲线围成两个封闭图形,且这两个封闭图形的面积总相等,则点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某市统考的学生数学考试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分别直方图.

(1)求这100份数学试卷成绩的中位数;

(2)从总分在的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=

(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

同步练习册答案