精英家教网 > 高中数学 > 题目详情
(2010•武昌区模拟)如图,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,侧棱与底面所成的角为α(0°<α<90°),点B1在底面上的射影D落在BC上.

(1)若点D恰为BC的中点,且AB1⊥BC1求α的值.
(2)若α=arccos
13
,且当AC=BC=AA1时,求二面角C1-AB-C的大小.
分析:(1)由题意可得:B1D⊥AC,再结合题意得到:AC⊥面BB1C1C,得到平行四边形BB1C1C为菱形,再根据解三角形的有关知识可得:∠B1BC=60°,进而结合线面角的定义得到答案.
(2)过C1作C1E⊥BC,垂足为E,则C1E⊥平面ABC.过E作EF⊥AB,垂足为F,则根据二面角平面角的定义可得:∠C1FE是所求二面角C1-AB-C的平面角,吧平面角放入直角三角形,进而利用解三角形的有关知识求出二面角的平面角.
解答:解:(1)∵B1D⊥面ABC,
∴B1D⊥AC,
又∵AC⊥BC,
∴AC⊥面BB1C1C.
∵AB1⊥BC1
∴由三垂线定理可知,B1C⊥BC1,即平行四边形BB1C1C为菱形,
又∵B1D⊥BC,且D为BC的中点,
∴B1C=B1B,即△BB1C为正三角形,
∴∠B1BC=60°,
∵B1D⊥面ABC,且点D落在BC上,
∴∠B1BC即为侧棱与底面所成的角,
∴α=60°.
(2)过C1作C1E⊥BC,垂足为E,则C1E⊥平面ABC.过E作EF⊥AB,垂足为F,由三垂线定理得⊥F⊥AB.
∴根据二面角平面角的定义可得:∠C1FE是所求二面角C1-AB-C的平面角.
设AC=BC=A1A=a,
在Rt△CC1E中,由∠C1CE=α=srccos
1
3
可得C1E=
2
2
3
a,
所以在Rt△BEF中,∠EBF=45°,EF=
2
2
BE=
2
2
3
a,
所以∠C1FE=45°.
故所求的二面角C1-AB-C为45°.
点评:本题考查求二面角的平面角与线面角,而空间角解决的关键是做角,由图形的结构及题设条件正确作出平面角来,是求角的关键,也可以根据几何体的结构特征建立空间直角坐标系利用向量的有关知识解决空间角等问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•武昌区模拟)球面上有3个点,其中任意两点的球面距离都等于大圆周长的
1
6
,经过这3点的小圆周长为4π,那么这个球的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)一个口袋中装有4个红球和5个白球,一次摸奖从中摸两个球,两个球颜色不同则中奖.
(Ⅰ)试求一次摸奖中奖的概率P;
(Ⅱ)求三次摸奖(每次摸奖后放回)中奖次数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)设函数f(x)=px-
q
x
-2lnx
,且f(e)=qe-
p
e
-2
,其中p≥0,e是自然对数的底数.
(1)求p与q的关系;
(2)若f(x)在其定义域内为单调函数,求p的取值范围.
(3)设g(x)=
2e
x
.若存在x0∈[1,e],使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)
lim
x→0
=
ex-1
x
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)2010年两会记者招待会上,主持人要从5名中国记者与4名外主国记者中选出3名进行提问,要求3人中既有国内记者又有国外记者,且国内记者不能连续提问,则不同的提问方式的种数是(  )

查看答案和解析>>

同步练习册答案