精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆 的离心率为 ,F1、F2为其左、右焦点,过F1的直线l交椭圆于A、B两点,△F1AF2的周长为
(1)求椭圆的标准方程;
(2)求△AOB面积的最大值(O为坐标原点).

【答案】
(1)解:设椭圆的半焦距为c,则 ,由题意知

二者联立解得 ,c=1,则b2=1,所以椭圆的标准方程为


(2)解:设直线l的方程为:x=ky﹣1,与 联立,消x,整理得:(k2+2)y2﹣2ky﹣1=0,△=(﹣2k)2+4(k2+2)=8k2+8>0,

所以 = = =

= = = = (当且仅当 ,即k=0时等号成立),所以△AOB面积的最大值为

说明:若设直线l的方程为:y=k(x+1)(k≠0),则 ,与 联立,消x,整理得:

所以 = = = =

当且仅当 ,即k=0时等号成立,由k≠0,则

当直线l的方程为:x=﹣1时,此时

综上所述:△AOB面积的最大值为


【解析】(1)设椭圆的半焦距为c,利用离心率以及△F1AF2的周长,解得a,c,然后求解椭圆的标准方程.(2)设直线l的方程为:x=ky﹣1,与 联立,消x,整理得:(k2+2)y2﹣2ky﹣1=0求出A,B的纵坐标,表示出三角形的面积公式,化简整理,通过基本不等式求出最值.说明:若设直线l的方程为:y=k(x+1)(k≠0),则 ,与 联立,方法与前边的求解相同.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求时,求的单调区间;

(2)讨论在定义域上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,角α(0≤α≤π)的始边为x轴的非负半轴,终边与单位圆的交点为A,将OA绕坐标原点逆时针旋转 至OB,过点B作x轴的垂线,垂足为Q.记线段BQ的长为y,则函数y=f(α)的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点A,B分别是椭圆 的长轴的左右端点,点F为椭圆的右焦点,直线PF的方程为: 且PA⊥PF.
(1)求直线AP的方程;
(2)设点M是椭圆长轴AB上一点,点M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 与g(x)=cos(2x+φ) ,它们的图象有一个横坐标为 的交点.
(Ⅰ)求φ的值;
(Ⅱ)将f(x)图象上所有点的横坐标变为原来的 倍,得到h(x)的图象,若h(x)的最小正周期为π,求ω的值和h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 的平均数为 ,标准差是 ,则另一组数 的平均数和标准差分别是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:( )
①向量 不共线,则向量 与向量 一定不共线
②对任意向量 ,则 恒成立
③在同一平面内,对两两均不共线的向量 ,若给定单位向量 和正数 ,总存在单位向量 和实数 ,使得
则正确的序号为( )
A.①②③
B.①③
C.②③
D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=2cos(x﹣ )的图象上所有的点的横坐标缩短到原来的 倍(纵坐标不变),得到函数y=g(x)的图象,则函数y=g(x)的图象(
A.关于点(﹣ ,0)对称
B.关于点( ,0)对称
C.关于直线x=﹣ 对称
D.关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一同学在电脑中打出如下若干个圆:○●○○●○○○●○○○○●○○○○○●…,若依此规律继续下去,得到一系列的圆,则在前2012个圆中共有●的个数是(
A.61
B.62
C.63
D.64

查看答案和解析>>

同步练习册答案