精英家教网 > 高中数学 > 题目详情

【题目】1)已知数列为等差数列,其前n项和为.若,试分别比较的大小关系.

2)已知数列为等差数列,的前n项和为.证明:若存在正整数k,使,则.

3)在等比数列中,设的前n项乘积,类比(2)的结论,写出一个与有关的类似的真命题,并证明.

【答案】12)证明见解析(3)在等比数列中,设的前n项乘积,若存在正整数k,使,则.证明见解析

【解析】

1)计算得到,得到证明.

2)设等差数列的公差为d根据得到,代入前项和公式计算得到答案.

3)若存在正整数k,使,则,根据得到,计算得到证明.

1

2)证明:设等差数列的公差为d∵存在正整数k,使

.

.

3)在等比数列中,设的前n项乘积

若存在正整数k,使,则.

证明:∵.

.

,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:

空调类

冰箱类

小家电类

其它类

营业收入占比

净利润占比

则下列判断中不正确的是( )

A. 该公司2018年度冰箱类电器营销亏损

B. 该公司2018年度小家电类电器营业收入和净利润相同

C. 该公司2018年度净利润主要由空调类电器销售提供

D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年2月25日,第届罗马尼亚数学大师赛(简称)于罗马尼亚首都布加勒斯特闭幕,最终成绩揭晓,以色列选手排名第一,而中国队无一人获得金牌,最好成绩是获得银牌的第名,总成绩排名第.而在分量极重的国际数学奥林匹克()比赛中,过去拿冠军拿到手软的中国队,也已经有连续年没有拿到冠军了.人们不禁要问“中国奥数究竟怎么了?”,一时间关于各级教育主管部门是否应该下达“禁奥令”成为社会热点.某重点高中培优班共人,现就这人“禁奥令”的态度进行问卷调查,得到如下的列联表:

不应下“禁奥令”

应下“禁奥令”

合计

男生

5

女生

10

合计

50

若采用分层抽样的方法从人中抽出人进行重点调查,知道其中认为不应下“禁奥令”的同学共有人.

(1)请将上面的列联表补充完整,并判断是否有的把握认为对下“禁奥令”的态度与性别有关?请说明你的理由;

(2)现从这人中抽出名男生、名女生,记此人中认为不应下“禁奥令”的人数为,求的分布列和数学期望.

参考公式与数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则对任意非零实数,方程 的解集不可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:

打卡天数

17

18

19

20

21

男生人数

3

5

3

7

2

女生人数

3

5

5

7

3

1)根据上表数据,求该幼儿园男生平均打卡的天数;

2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[5565),[6575),[7585),[8595]分组).

分组

频数

[5565

2

[6575

4

[7585

10

[8595]

4

合计

20

第一车间样本频数分布表

(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;

(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)

(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCDA1B1C1D1 的棱长为 2,且AC BD 交于点OE 为棱DD1 中点,以A 为原点,建立空间直角坐标系Axyz,如图所示.

(Ⅰ)求证:B1O平面EAC

(Ⅱ)若点F EA 上且B1FAE,试求点F 的坐标;

(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的准线为,其焦点为F,点B是抛物线C上横坐标为的一点,若点B到的距离等于

(1)求抛物线C的方程,

(2)设A是抛物线C上异于顶点的一点,直线AO交直线于点M,抛物线C在点A处的切线m交直线于点N,求证:以点N为圆心,以为半径的圆经过轴上的两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,对于,均有,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

同步练习册答案