精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的一个焦点为,离心率为.

1)求的标准方程;

2)若动点外一点,且的两条切线相互垂直,求的轨迹的方程;

3)设的另一个焦点为,过上一点的切线与(2)所求轨迹交于点,,求证:.

【答案】(1);(2;(3)见解析.

【解析】

1)利用题中条件求出的值,然后根据离心率求出的值,最后根据三者的关系求出的值,从而确定椭圆C的标准方程;

2)设,切点分别为,,当时,设切线方程为,与椭圆联立消去,得,根据根的判别式,化简得,又因为在椭圆外, .又因为,所以,即,化简为,

整理即可得的轨迹方程.

3)设,先求.方法一:由相交弦定理,得.

方法二:切线的参数方程,将代入圆,因为点在圆内,整理可得.再利用公式求,所以证得.

1)解:设,

由题设,得,,所以,,

所以的标准方程为.

2)解:如图,设,切点分别为,,

时,设切线方程为,

联立方程,得,

消去,得,①

关于的方程①的判别式,

化简,得,②

关于的方程②的判别式,

因为在椭圆外,

所以,即,所以.

关于的方程②有两个实根,分别是切线,的斜率,

因为,所以,即,化简为,

时,可得,满足,

所以的轨迹方程为.

3)证明:如图,设,先求.

方法一:由相交弦定理,得

.

方法二:切线的参数方程为为参数),

,

代入圆,整理得,

因为点在圆内,

所以上述方程必有两个不等实根,,,且,

所以,

时,,仍有.

再求.

,

因为点在椭圆上,所以,即,

所以,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若存在正常数,使得对一切均成立,则称是“控制增长函数”,在以下四个函数中:①;②;③;④.是“控制增长函数”的有(

A.②③B.③④C.②③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

6

14

18

27

25

10

1)从空气质量指数属于的天数中任取3天,求这3天中空气质量至少有2天为优的概率;

2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3个红球与3个黑球随机排成一行,从左到右依次在球上标记123456,则红球上的数字之和小于黑球上的数字之和的概率为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生产旅游纪念品的工厂,拟在2017年度进行系列促销活动.经市场调查和测算,该纪念品的年销售量x单位:万件与年促销费用t单位:万元之间满足3-x与t+1成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知工厂2017年生产纪念品的固定投资为3万元,每生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为“年平均每件生产成本的1.5倍”与“年平均每件所占促销费的一半”之和时,则当年的产量和销量相等.利润=收入-生产成本-促销费用

(1)请把该工厂2017年的年利润y单位:万元表示成促销费t单位:万元的函数;

(2)试问:当2017年的促销费投入多少万元时,该工厂的年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解居民的家庭收人情况,某社区组织工作人员从该社区的居民中随机抽取了户家庭进行问卷调查.经调查发现,这些家庭的月收人在元到元之间,根据统计数据作出如图所示的频率分布直方图.已知图中从左至右第一 、二、四小组的频率之比为,且第四小组的频数为.

(1);

(2)求这户家庭月收人的众数与中位数(结果精确到);

(3)户家庭月收入在第一、二、三小组的家庭中,用分层抽样的方法任意抽取户家庭,并从这户家庭中随机抽取户家庭进行慰问,求这户家庭月收入都不超过元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家的学习兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下列数学问题的答案:已知数列1121248124816……,其中第一项是,接下来的两项是,再接下来的三项是……,以此类推,求满足如下条件的最小整数且该数列的前项和为2的整数幂,那么该软件的激活码是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线过点为其焦点,过且不垂直于轴的直线交抛物线两点,动点满足的垂心为原点.

1)求抛物线的方程;

2)求证:动点在定直线上,并求的最小值.

查看答案和解析>>

同步练习册答案