【题目】(本小题满分12分)
如图,在五棱锥中,,且.
(1)已知点在线段上,确定的位置,使得;
(2)点分别在线段上,若沿直线将四边形向上翻折,与恰好重合,求直线与平面所成角的正弦值.
【答案】(1)点为靠近的三等分点;(2).
【解析】
试题分析:(1)当点为靠近的三等分点时,在线段取一点,使得,连结,可证四边形为平行四边形,得,再根据比例关系得,从而得平面平面,进而得结论;(2)如图,建立空间直角坐标系,可得,再列方程组求出平面的一个法向量,根据空间向量夹角余弦公式求解即可.
试题解析:(1)点为靠近的三等分点.
在线段取一点,使得,连结.
.
又,四边形为平行四边形,.
点为靠近的三等分点,.
,而.
(2)取的中点,连接,,又,
.
如图,建立空间直角坐标系,则.
设.则
翻折后,与重合,,又.
故,从而,.
.
设为平面的一个法向量,
则
取,则.
设直线与平面所成角为,则,
故直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为(为参数),若以直角坐标系的点为极点,方向为极轴,选择相同的长度单位建立极坐标系,得曲线的极坐标方程为.
(1)求直线的倾斜角和曲线的直角坐标方程;
(2)若直线与曲线交于、两点,设点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】漳州市博物馆为了保护一件珍贵文物,需要在馆内一种透明又密封的长方体玻璃保护罩内充入保护液体.该博物馆需要支付的总费用由两部分组成:①罩内该种液体的体积比保护罩的容积少0.5立方米,且每立方米液体费用500元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为4000元.
(Ⅰ)求该博物馆支付总费用与保护罩容积之间的函数关系式;
(Ⅱ)求该博物馆支付总费用的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 经过椭圆: 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆于, 两点,且().
(1)求椭圆的方程;
(2)当三角形的面积取得最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题错误的是 ( )
A. 如果平面平面,那么平面内一定存在直线平行于平面
B. 如果平面不垂直平面,那么平面内一定不存在直线垂直于平面
C. 如果平面平面,平面平面,且,那么
D. 如果平面平面,那么平面内所有直线都垂直于平面
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com