精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图椭圆的两个焦点为和顶点构成面积为32的正方形.

(1)求此时椭圆的方程;
(2)设斜率为的直线与椭圆相交于不同的两点的中点,且. 问:两点能否关于直线对称. 若能,求出的取值范围;若不能,请说明理由.
(1) . (2) 当时,两点关于过点的直线对称.

试题分析:由已知可得,所以.
所求椭圆方程为.
②设直线的方程为,代入
.
由直线与椭圆相交于不同的两点知
.   ②
要使两点关于过点的直线对称,必须.
,则.

解得.  ③
由②、③得
.  .
故当时,两点关于过点的直线对称.
点评:解决该试题关键是对于椭圆方程的求解,要运用其性质来得到关于a,b,c的关系式来得到结论,而对于直线与椭圆的位置关系的考查,要联立方程组,结合韦达定理和判别式来期间诶得到范围,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题15分)已知点是椭圆E)上一点,F1F2分别是椭圆E的左、右焦点,O是坐标原点,PF1x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,已知直线OP1OP2为双曲线E:的渐近线,△P1OP2的面积为,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为.

(1)若P1P2点的横坐标分别为x1x,则x1x2之间满足怎样的关系?并证明你的结论;
(2)求双曲线E的方程;
(3)设双曲线E上的动点,两焦点,若为钝角,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知为椭圆的两个焦点,过作椭圆的弦,若的周长为,则该椭圆的标准方程为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设斜率为2的直线l过双曲线的右焦 点,且与双曲线的左、右两支分别相交,则双曲线离心率e的取值范围是(   )
A.e>B.e>C.1<e<D.1<e<

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
抛物线顶点在坐标原点,焦点与椭圆的右焦点重合,过点斜率为的直线与抛物线交于两点.

(Ⅰ)求抛物线的方程;
(Ⅱ)求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线经过椭圆的焦点并且与椭圆相交于两点,线段的垂直平分线与轴相交于点,则面积的最大值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
设椭圆)的两个焦点是),且椭圆与圆有公共点.
(1)求的取值范围;
(2)若椭圆上的点到焦点的最短距离为,求椭圆的方程;
(3)对(2)中的椭圆,直线)与交于不同的两点,若线段的垂直平分线恒过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,角A,B,C的对边分别a,b,c,若.则直线被圆所截得的弦长为       

查看答案和解析>>

同步练习册答案