精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左、右焦点分别为 ,且离心率为 为椭圆上任意一点,当时, 的面积为1.

(1)求椭圆的方程;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线 分别与椭圆交于点 ,设直线的斜率为,直线的斜率为,求证: 为定值.

【答案】(1);(2)

【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;

(2)设

当直线的斜率不存在时,可得

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去通过运算可得

,同理可得,由此得到直线的斜率为

直线的斜率为,进而可得.

试题解析:(1)设由题

解得,则

椭圆的方程为.

(2)设

当直线的斜率不存在时,设,则

直线的方程为代入,可得

,则

直线的斜率为,直线的斜率为

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去可得:

,则,代入上述方程可得

,则

设直线的方程为,同理可得

直线的斜率为

直线的斜率为

.

所以,直线的斜率之积为定值,即.

型】解答
束】
21

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若方程有两个实数根 ,且,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析: 处的切线方程为,求导算出切线方程即可求出结果构造,求导,得在区间上单调递减,在区间上单调递增,设的根为,证得,讨论证得的根为 ,从而得证结论

解析:(1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(Ⅰ)可知

在(-1,0)处的切线方程为

易得, ,令

时,

时,

故函数上单调递增,又

所以当时, ,当时,

所以函数在区间上单调递减,在区间上单调递增,

的根为,则

又函数单调递减,故,故

在(0,0)处的切线方程为,易得

时,

时,

故函数上单调递增,又

所以当时, ,当时,

所以函数在区间上单调递减,在区间上单调递增,

的根为,则

又函数单调递增,故,故

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(n)是定义在N*上的增函数,f(4)=5,且满足:

①任意n∈N*,f(n) Z;②任意mn∈N*,有f(m)f(n)=f(mn)+f(mn-1).

(1)求f(1),f(2),f(3)的值;

(2)求f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)设命题实数满足,其中,命题实数满足.若的充分不必要条件,求实数的取值范围.

(Ⅱ)已知命题方程表示焦点在x轴上双曲线;命题空间向量的夹角为锐角,如果命题“”为真,命题“”为假.求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中, ,平面平面.

(1)求证:

(2)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是公差不为零的等差数列,满足,且成等比数列.

(1)求数列的通项公式;

(2)设数列满足,求数列的前项和.

【答案】(1);(2)

【解析】试题分析:1)设等差数列 的公差为,由a3=7,且成等比数列.可得,解之得即可得出数列的通项公式;

2)由(1)得,则,由裂项相消法可求数列的前项和.

试题解析:(1)设数列的公差为,且由题意得

,解得

所以数列的通项公式.

(2)由(1)得

.

型】解答
束】
18

【题目】四棱锥的底面为直角梯形,为正三角形.

(1)点为棱上一点,若平面,求实数的值;

(2)求点B到平面SAD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为

,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得

可得曲线C的极坐标方程.

(2)由(1)不妨设M(),,(),

由此可求面积的最大值.

试题解析:(1)由题意可知直线的直角坐标方程为

曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为

所以曲线C的极坐标方程为

.

(2)由(1)不妨设M(),,(),

时,

所以△MON面积的最大值为.

型】解答
束】
23

【题目】已知函数的定义域为

(1)求实数的取值范围;

(2)设实数的最大值,若实数 满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).

1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;

2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:

方案一:全场商品打8.5折;

方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)设为椭圆上任一点, 为其右焦点,点满足.

①证明: 为定值;

②设直线与椭圆有两个不同的交点,与轴交于点.若成等差数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是菱形,是棱的中点,在线段上,且.

(1)证明:

(2)若,面,求二面角的余弦值.

查看答案和解析>>

同步练习册答案