【题目】已知椭圆: 的左、右焦点分别为, ,且离心率为, 为椭圆上任意一点,当时, 的面积为1.
(1)求椭圆的方程;
(2)已知点是椭圆上异于椭圆顶点的一点,延长直线, 分别与椭圆交于点, ,设直线的斜率为,直线的斜率为,求证: 为定值.
【答案】(1);(2)
【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;
(2)设, ,
当直线的斜率不存在时,可得;
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去通过运算可得
,同理可得,由此得到直线的斜率为,
直线的斜率为,进而可得.
试题解析:(1)设由题,
解得,则,
椭圆的方程为.
(2)设, ,
当直线的斜率不存在时,设,则,
直线的方程为代入,可得,
, ,则,
直线的斜率为,直线的斜率为,
,
当直线的斜率不存在时,同理可得.
当直线、的斜率存在时,,
设直线的方程为,则由消去可得:
,
又,则,代入上述方程可得
,
,则
,
设直线的方程为,同理可得,
直线的斜率为,
直线的斜率为,
.
所以,直线与的斜率之积为定值,即.
【题型】解答题
【结束】
21
【题目】已知函数, ,在处的切线方程为.
(1)求, ;
(2)若方程有两个实数根, ,且,证明: .
【答案】(1), ;(2)见解析
【解析】试题分析: 在处的切线方程为,求导算出切线方程即可求出结果构造,求导,得在区间上单调递减,在区间上单调递增,设的根为,证得,讨论证得的根为, ,从而得证结论
解析:(1)由题意,所以,
又,所以,
若,则,与矛盾,故, .
(2)由(Ⅰ)可知, ,
设在(-1,0)处的切线方程为,
易得, ,令
即, ,
当时,
当时,
设, ,
故函数在上单调递增,又,
所以当时, ,当时, ,
所以函数在区间上单调递减,在区间上单调递增,
故, ,
设的根为,则,
又函数单调递减,故,故,
设在(0,0)处的切线方程为,易得,
令, ,
当时, ,
当时,
故函数在上单调递增,又,
所以当时, ,当时, ,
所以函数在区间上单调递减,在区间上单调递增,
, ,
设的根为,则,
又函数单调递增,故,故,
又,
.
科目:高中数学 来源: 题型:
【题目】设f(n)是定义在N*上的增函数,f(4)=5,且满足:
①任意n∈N*,f(n) Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)设命题实数满足,其中,命题实数满足.若是的充分不必要条件,求实数的取值范围.
(Ⅱ)已知命题方程表示焦点在x轴上双曲线;命题空间向量,的夹角为锐角,如果命题“”为真,命题“”为假.求的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是公差不为零的等差数列,满足,且、、成等比数列.
(1)求数列的通项公式;
(2)设数列满足,求数列的前项和.
【答案】(1);(2)
【解析】试题分析:(1)设等差数列 的公差为,由a3=7,且、、成等比数列.可得,解之得即可得出数列的通项公式;
2)由(1)得,则,由裂项相消法可求数列的前项和.
试题解析:(1)设数列的公差为,且由题意得,
即 ,解得,
所以数列的通项公式.
(2)由(1)得
,
.
【题型】解答题
【结束】
18
【题目】四棱锥的底面为直角梯形,,,,为正三角形.
(1)点为棱上一点,若平面,,求实数的值;
(2)求点B到平面SAD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(, 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点, 与原点构成,且满足,求面积的最大值.
【答案】(1);(2)
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为,
,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(),,(),
,
,
由此可求面积的最大值.
试题解析:(1)由题意可知直线的直角坐标方程为,
曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为,
所以曲线C的极坐标方程为,
即.
(2)由(1)不妨设M(),,(),
,
,
当 时, ,
所以△MON面积的最大值为.
【题型】解答题
【结束】
23
【题目】已知函数的定义域为;
(1)求实数的取值范围;
(2)设实数为的最大值,若实数, , 满足,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).
(1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:
方案一:全场商品打8.5折;
方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)设为椭圆上任一点, 为其右焦点,点满足.
①证明: 为定值;
②设直线与椭圆有两个不同的交点,与轴交于点.若成等差数列,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com