精英家教网 > 高中数学 > 题目详情
已知
(1)设,求的最大值与最小值;
(2)求的最大值与最小值;
(1)最大值9,最小值;(2)最大值67,最小值3

试题分析:(1)根据指数函数单调性求其最值。(2)由已知可转化为,图像是开口向上以为对称轴的抛物线。时,,所以取得最小值即取得最小值,取得最大值即取得最大值。
试题解析:解:(1)是单调增函数

(2)令
原式变为:
 ,
时,此时
时,此时
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.
(1)求f(1)的值;
(2)证明:a>0,c>0;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求函数上的值域;
(2)证明对于每一个,在上存在唯一的,使得
(3)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x,y∈R,且满足
(x-2)3+2(x-2)+sin(x-2)=-3
(y-2)3+2(y-2)+sin(y-2)=3
,则x+y=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设max{f(x),g(x)}=,若函数n(x)=x2+px+q(p,q∈R)的图象经过不同的两点(,0)、(,0),且存在整数n使得n<<<n+1成立,则(    )
A.max{n(n),n(n+1)}>1B.max{n(n),n(n+1)}<1
C.max{n(n),n(n+1)}>D.max{n(n),n(n+1)}>

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(  )
A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设y=(log2x)2+(t-2)log2x-t+1,若t在[-2,2]上变化时,y恒取正值,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的值域是,则实数的取值范围是  (     )
A.B.C.D..

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义:如果函数在区间上存在,满足,则称是函数在区间上的一个均值点。已知函数在区间上存在均值点,则实数的取值范围是        .

查看答案和解析>>

同步练习册答案