精英家教网 > 高中数学 > 题目详情
(15)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有         种。

15.100

解析:至少含1名女生包括含1名、2名、3名,因此有CC+CC+C=100.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修该课程的55名学生,得到数据如下表:
  喜欢统计课程 不喜欢统计课程 合计
男生 20 5 25
女生 10 20 30
合计 30 25 55
(I)判断是否有99. 5%的把握认为喜欢“应用统计”课程与性别有关?
(II)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选2人,求恰有1个男生和1个女生的概率.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 ② 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山西长治二中等四校高三第四次联考文科数学试卷(解析版) 题型:解答题

为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:

表1:男生上网时间与频数分布表

上网时间(分钟)

人数

5

25

30

25

15

表2:女生上网时间与频数分布表

上网时间(分钟)

人数

10

20

40

20

10

(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;

(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?

(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.

表3 :

 

上网时间少于60分钟

上网时间不少于60分钟

合计

男生

 

 

 

女生

 

 

 

合计

 

 

 

附:,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:

表1:男生上网时间与频数分布表

上网时间(分钟)

人数

5

25

30

25

15

表2:女生上网时间与频数分布表

上网时间(分钟)

人数

10

20

40

20

10

(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;

(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性 别有关”?

(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.

表3 :

上网时间少于60分钟

上网时间不少于60分钟

合计

男生

女生

合计

附:,其中

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

为了解某班学生喜爱打羽毛球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中随机抽取1人抽到不喜爱打羽毛球的学生的概率

(1)请将上面的列联表补充完整;

(2)是否有99.5%的把握认为喜爱打羽毛球与性别有关?说明你的理由;

(3)已知喜爱打羽毛球的10位女生中,还喜欢打篮球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打篮球、喜欢打乒乓球、喜欢踢足球的6位女生中各选出1名进行其他方面的调查,求女生不全被选中的概率.下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(参考公式:其中.)

【解析】第一问利用数据写出列联表

第二问利用公式计算的得到结论。

第三问中,从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得

解:(1) 列联表补充如下:

 

 

喜爱打羽毛球

不喜爱打羽毛球

合计

男生

20

25

女生

10

15

25

合计

30

20

50

(2)∵

∴有99.5%的把握认为喜爱打篮球与性别有关

(3)从6位女生中选出喜欢打篮球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:

 

基本事件的总数为8,

表示“不全被选中”这一事件,则其对立事件表示“全被选中”这一事件,由于 2个基本事件由对立事件的概率公式得.

 

查看答案和解析>>

同步练习册答案