精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=a|x-1|+|x-a|(a>0).
(1)当a=2时,解不等式f(x)≤4;
(2)若f(x)≥1,求a的取值范围.

分析 (1)当a=2时,f(x)在(-∞,1]上递减,在[1,+∞)上递增,f(0)=f($\frac{8}{3}$)=4利用解不等式f(x)≤4;
(2)若f(x)≥1,分类讨论,即可求a的取值范围.

解答 解:(1)f(x)=2|x-1|+|x-2|=$\left\{\begin{array}{l}{-3x+4,x<1}\\{x,1≤x≤2}\\{3x-4,x>2}\end{array}\right.$
所以,f(x)在(-∞,1]上递减,在[1,+∞)上递增,
又f(0)=f($\frac{8}{3}$)=4,故f(x)≤4的解集为{x|0≤x≤$\frac{8}{3}$}.…(4分)
(2)①若a>1,f(x)=(a-1)|x-1|+|x-1|+|x-a|≥a-1,
当且仅当x=1时,取等号,故只需a-1≥1,得a≥2.…(6分)
②若a=1,f(x)=2|x-1|,f(1)=0<1,不合题意.…(7分)
③若0<a<1,f(x)=a|x-1|+a|x-a|+(1-a)|x-a|≥a(1-a),
当且仅当x=a时,取等号,故只需a(1-a)≥1,这与0<a<1矛盾.…(9分)
综上所述,a的取值范围是[2,+∞).…(10分)

点评 本题考查绝对值不等式的解法,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{2}$ax2+lnx,a∈R.
(Ⅰ)若曲线y=f(x)与直线y=3x+b在x=1处相切,求实数a,b的值;
(Ⅱ)求函数y=f(x)的单调区间;
(Ⅲ)若a=0时,函数h(x)=f(x)+bx有两个不同的零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.张老师 上班,有路线①与路线②两条路线可供选择.
路线①:沿途有A,B两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为$\frac{1}{2},\frac{2}{3}$,若A处遇到红灯或黄灯,则导致延误时间2分钟;若B处遇到红灯或黄灯,则导致延误时间3分钟;若两处都遇到绿灯,则全程所花时间为20分钟.
路线②:沿途有a,b两处独立运行的交通信号灯,且两处遇到绿灯的概率依次为$\frac{3}{4}\frac{2}{5}$,若a处遇到红灯或黄灯,则导致延误时间8分钟;若b处遇到红灯或黄灯,则导致延误时间5分钟;若两处都遇绿灯,则全程所化时间为15分钟.
(1)若张老师选择路线①,求他20分钟能到校的概率;
(2)为使张老师日常上班途中所花时间较少,你建议张老师选择哪条路线?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设△ABC的内角A,B,C的对边分别为a,b,c,且a=$\sqrt{7}$,3sinA=$\sqrt{7}$sinB,cosC=$\frac{2\sqrt{7}}{7}$,则边c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C所对的边分别为a、b、c.已知acosAcosB-bsin2A-ccosA=2bcosB.
(1)求B;
(2)若$b=\sqrt{7}a,{S_{△ABC}}=2\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC的外接圆的圆心为O,半径为2,且$\overrightarrow{OA}$+$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{0}$,则向量$\overrightarrow{CA}$在向量$\overrightarrow{CB}$方向上的投影为(  )
A.3B.$\sqrt{3}$C.-3D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁UB)为(  )
A.{1,4,6}B.{2,4,6}C.{2,4}D.{4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集为全体实数R,集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求(∁RA)∩B;
(2)若A∩C≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a=2,则(1+ax)5的展开式中x3项的系数为80.

查看答案和解析>>

同步练习册答案