精英家教网 > 高中数学 > 题目详情

【题目】,其中是不等于零的常数。

(1)写出的定义域;

(2)求的单调递增区间;

(3)已知函数,定义:.其中,表示函数上的最小值,表示函数上的最大值.例如:,则,当时,设,不等式恒成立,求的取值范围.

【答案】(1)

(2)时,递增;时,递增;时,递增

(3)

【解析】

1)考查复合函数的定义域;

2时在单调递增,在时是对勾函数,是其极小值点,利用这个求单调递增区间;

3)不等式恒成立,就是求函数的最大值与最小值,而实际上是对函数求较小的那个.

解:(1的定义域为

2)设任意的

时,递增;

时,递增;

时,递增;

时,递减,无单调增区间.

3的定义域为

时,时,

所以当时,,在单调递减,所以

,则在区间上的最小值为,最大值为0

时,,在单调递增,并且1

.当时,,所以

.当时,,所以,在上单调递减

所以的最大值为,最小值为

综上的最大值为0,最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量,获得本场比赛胜利,最终人机大战总比分定格1:4.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(Ⅰ)根据已知条件完成列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为X。若每次抽取的结果是相互独立的,求X的分布列,期望 E(X) 和方差 D(X) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinxcosx﹣ x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)当x∈[0, ]时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得到个组成,周而复始,循环记录。2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的()

A. 己亥年 B. 戊戌年 C. 庚子年 D. 辛丑年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2lnx

)若a1,求函数fx)的极值;

)若函数fx)在区间[12]上为单调递增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(Ⅰ)若a=﹣1,证明:函数f(x)是(0,+∞)上的减函数;
(Ⅱ)若曲线y=f(x)在点(1,f(1))处的切线与直线x﹣y=0平行,求a的值;
(Ⅲ)若x>0,证明: (其中e=2.71828…是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络时代的进步,流量成为手机的附带品,人们可以利用手机随时随地的浏览网页,聊天,看视频,因此,社会上产生了很多低头族.某研究人员对该地区18∽50岁的5000名居民在月流量的使用情况上做出调查,所得结果统计如下图所示:

(Ⅰ)以频率估计概率,若在该地区任取3位居民,其中恰有位居民的月流量的使用情况

在300M∽400M之间,求的期望

(Ⅱ)求被抽查的居民使用流量的平均值;

(Ⅲ)经过数据分析,在一定的范围内,流量套餐的打折情况与其日销售份数成线性相关

关系,该研究人员将流量套餐的打折情况与其日销售份数的结果统计如下表所示:

折扣

1

2

3

4

5

销售份数

50

85

115

140

160

试建立关于的的回归方程.

附注:回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,a3=7,S9=27.

(1)求数列{an}的通项公式;

(2)bn=|an|,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是递增的等差数列,且满足a2a4=21,a1+a5=10.

(1)求{an}的通项公式;

(2)若数列{cn}前n项和Cn=an+1,数列{bn}满足bn=2ncn(n∈N*),求{bn}的前n项和.

查看答案和解析>>

同步练习册答案