精英家教网 > 高中数学 > 题目详情
19.在极坐标系中,已知曲线C1:ρcos(θ+$\frac{π}{3}$)=m和C2:ρ=4cosθ,若m∈(-1,3),则曲线C1与C2的位置关系是(  )
A.相切B.相交C.相离D.不确定

分析 利用ρ2=x2+y2,y=ρsinθ,x=ρcosθ即可把曲线C1与C2化为直角坐标方程,利用点到直线的距离公式求出圆心到直线C1的距离d,与半径比较即可得出位置关系.

解答 解:曲线C1:ρcos(θ+$\frac{π}{3}$)=m化为$\frac{1}{2}ρcosθ$-$\frac{\sqrt{3}}{2}$ρsinθ=m,化为x-$\sqrt{3}$y=2m.m∈(-1,3).
C2:ρ=4cosθ,即ρ2=4ρcosθ,化为x2+y2=4x,配方为(x-2)2+y2=4.
圆心(2,0)到直线C1的距离d=$\frac{|2-0-2m|}{\sqrt{{1}^{2}+(-\sqrt{3})^{2}}}$=|m-1|,
∵m∈(-1,3),∴d∈[0,2).
则曲线C1与C2的位置关系是相交,
故选:B.

点评 本题考查了极坐标化为直角坐标的方法、圆的标准方程、点到直线的距离公式、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若函数y=f(x)的值域是$[\frac{1}{4},4]$,则函数y=f(x)-2$\sqrt{f(x)}$的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.根据如下的样本数据:
x1234567
y7.35.14.83.12.00.3-1.7
得到的回归方程为y=bx+a,则(  )
A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=logkx(k为常数,k>0且k≠1),且数列{f(an)}是首项为4,公差为2的等差数列.
(1)求证:数列{an}是等比数列;
(2)若bn=an+f(an),当$k=\frac{1}{{\sqrt{2}}}$时,求数列{bn}的前n项和Sn的最小值;
(3)若cn=anlgan,问是否存在实数k,使得{cn}是递增数列?若存在,求出k的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.对于函数$f(x)=\frac{1}{1-x}$,定义${f_1}(x)=f(x),{f_{n+1}}(x)=f[{{f_n}(x)}]\;\;(n∈{N^*})$.已知偶函数g(x)的定义域为(-∞,0)∪(0,+∞),g(1)=0;当x>0,且x≠1时,g(x)=f2015(x).
(1)求f2(x),f3(x),f4(x),并求出函数y=g(x)的解析式;
(2)若存在实数a,b(a<b)使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(1-$\root{3}{x}$)8展开式中x的系数为-56.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若动圆C过定点A(4,0),且在y轴上截得弦MN的长为8,则动圆圆心C的轨迹方程是(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1(x>2)$C.y2=8xD.y2=8x(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知{an}为各项均为正整数的等差数列,a1+a27=572,且存在正整数m,使得a1,a14,am成等比数列,则所有满足条件的{an}中,公差的最大值与最小值的差为21.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若Sn是等差数列{an}的前n项和,且$\frac{S_8}{8}=\frac{S_6}{6}+10$,则$\lim_{n→∞}\frac{S_n}{n^2}$=5.

查看答案和解析>>

同步练习册答案