精英家教网 > 高中数学 > 题目详情
4.已知函数y=f(x)的图象关于直线x=1对称,当x<1时,f(x)=|($\frac{1}{2}$)x-1|,那么当x>1时,函数f(x)的递增区间是(  )
A.(-∞,0)B.(1,2)C.(2,+∞)D.(2,5)

分析 由题意可得可将x换为2-x,可得x>1的f(x)的解析式,画出图象,即可得到所求递增区间.

解答 解:函数y=f(x)的图象关于直线x=1对称,
当x<1时,f(x)=|($\frac{1}{2}$)x-1|,
可得x>1时,f(x)=|($\frac{1}{2}$)2-x-1|,即为f(x)=|2x-2-1|,
画出x>1时,y=f(x)的图象,
可得递增区间为(2,+∞).
故选:C.

点评 本题考查函数的对称性和单调性,考查数形结合的思想方法,运用对称求得x>1的解析式是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知幂函数f(x)=(m-1)2x${\;}^{{m}^{2}-3m+2}$在(0,+∞)上单调递增,函数g(x)=2x+k,当x∈(1,2]时,记f(x)和g(x)的值域分别为A和B,若B⊆A∩B,则实数k的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知三棱锥的三视图如图所示,其中俯视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知{an}是公差不为0的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求证:数列{bn}的前n项和Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l1:(m-2)x-y+5=0与l2:(m-2)x+(3-m)y+2=0平行,则实数m的值为(  )
A.2或4B.1或4C.1或2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列结论:
①已知函数f(x)是定义在R上的奇函数,若f(-1)=2,f(-3)=-1,则f(3)<f(-1);
②函数y=log${\;}_{\frac{1}{2}}$(x2-2x)的单调递增减区间是(-∞,0);
③已知函数f(x)是奇函数,当x≥0时,f(x)=x2,则当x<0时,f(x)=-x2
④若函数y=f(x)的图象与函数y=ex的图象关于直线y=x对称,则对任意实数x,y都有f(xy)=f(x)+f(y).
则正确结论的序号是①③④(请将所有正确结论的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=2,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的前n项和为Sn,公差d≠0,且S1+S3=18,a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)设{$\frac{{a}_{n}}{{b}_{n}}$}是首项为1,公比为$\frac{1}{3}$的等比数列,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“a≤0”是“函数f(x)=ax+lnx存在极值”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案