精英家教网 > 高中数学 > 题目详情

【题目】如图所示:在五面体ABCDEF中,四边形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

(Ⅰ)求证:平面ABCD⊥平面EDCF;

(Ⅱ)求三棱锥A-BDF的体积.

【答案】(1)见解析:(2)

【解析】

(1)推导出AD⊥DE,CD⊥DE,从而DE⊥平面ABCD,由此能证明平面ABCD⊥平面EDCF,(2)三棱锥A﹣BDF的体积VA﹣BDF=VF﹣ABD,由此能求出结果.

(1)证明:∵在五面体ABCDEF中,四边形EDCF是正方形,∠ADE=90°,

∴AD⊥DE,CD⊥DE,

∵AD∩CD=D,∴DE⊥平面ABCD,

∵DE平面EDCF,∴平面ABCD⊥平面EDCF.

(2) 由(1)知DE⊥平面,所以平面. 等腰三角形

又DC∥EF,平面ABFE,平面ABFE,所以DC∥平面ABFE.

又平面ABCD∩平面ABFE=AB,故AB∥CD.所以四边形为等腰梯形.又AD=DE,所以AD=CD=CB,由,在等腰中由余弦定理得BD=ADBD,所以三棱锥的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下四个命题中真命题的序号是( .

①平面内到两定点距离之比等于常数的点的轨迹是圆;

②平面内与定点A-30)和B30)的距离之差等于4的点的轨迹为

③点P是抛物线上的动点,点Px轴上的射影是M,A的坐标是,则的最小值是

④已知P为抛物线上一个动点,Q为圆上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将编号为1、2、3、4的四个小球随机的放入编号为1、2、3、4的四个纸箱中,每个纸箱有且只有一个小球,称此为一轮“放球”.设一轮“放球”后编号为的纸箱放入的小球编号为,定义吻合度误差为

(1) 写出吻合度误差的可能值集合;

(2) 假设等可能地为1,2,3,4的各种排列,求吻合度误差的分布列;

(3)某人连续进行了四轮“放球”,若都满足,试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮“放球”相互独立);

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;

(Ⅱ)若曲线与曲线相交于两点,且与轴相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源租赁汽车”.每次租车收费的标准由两部分组成:里程计费:1元/公里;时间计费:元/分.已知陈先生的家离上班公司公里,每天上、下班租用该款汽车各一次.一次路上开车所用的时间记为(分),现统计了50次路上开车所用时间,在各时间段内频数分布情况如下表所示

将各时间段发生的频率视为概率,一次路上开车所用的时间视为用车时间,范围为分.

(1)估计陈先生一次租用新能源租赁汽车所用的时间不低于分钟的概率;

(2)若公司每月发放元的交通补助费用,请估计是否足够让陈先生一个月上下班租用新能源租赁汽车(每月按天计算),并说明理由.(同一时段,用该区间的中点值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了茎叶图:则下列结论中表述不正确的是

A. 第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80分钟

B. 第二种生产方式比第一种生产方式的效率更高

C. 这40名工人完成任务所需时间的中位数为80

D. 无论哪种生产方式的工人完成生产任务平均所需要的时间都是80分钟.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,e是自然对数的底,

(1)讨论的单调性;

(2)若是函数的零点,的导函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,曲线C由部分椭圆C1=1a>b>0,y≥0和部分抛物线C2:y=-x2+1y≤0连接而成,C1与C2的公共点为A,B,其中C1所在椭圆的离心率为

1求a,b的值;

2过点B的直线l与C1,C2分别交于点P,QP,Q,AB中任意两点均不重合,若AP⊥AQ,求直线l

的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的焦距为短半轴的长为2,过点P(-2,1)且斜率为1的直线l与椭圆C交于AB两点

(1)求椭圆C的方程

(2)求弦AB的长

查看答案和解析>>

同步练习册答案