【题目】已知A(0,2),B(0,﹣2),动点P(x,y)满足PA,PB的斜率之积为.
(1)求动点P的轨迹C的方程;
(2)已知直线l:y=kx+m,C的右焦点为F,直线l与C交于M,N两点,若F是△AMN的垂心,求直线l的方程.
【答案】(1)1(x≠0);(2)y=x.
【解析】
(1)根据动点P(x,y)满足PA,PB的斜率之积为,可得P的坐标之间的关系,且横坐标不为0,求出P的轨迹方程;
(2)由(1)可得右焦点F的坐标,联立直线与椭圆的方程可得两根之和及两根之积,由F是△AMN的垂心可得AF⊥MN,NF⊥AM,可得m的值.
(1)因为动点P(x,y)满足PA,PB的斜率之积为,
所以(x≠0),
整理可得1,
所以动点P的轨迹C的方程:1(x≠0);
(2)由(1)可得右焦点F(2,0),可得kAF1,
因为F为垂心,
所以直线MN的斜率为1,
设M(x1,y1),N(x2,y2),
联立直线l与椭圆的方程:,整理得:3x2+4mx+2m2﹣8=0,
△=16m2﹣4×3×(2m2﹣8)>0,即m2<12,
x1+x2,x1x2,
因为AM⊥NF,
所以kAMkNF=﹣1,即1,
整理可得y2(y1﹣2)+x1(x2﹣2)=0,
即y1y2+x1x2﹣2x1﹣2y2=0,
即y1y2+x1x2﹣2x1﹣2(x2+m)=0,
整理可得y1y2+x1x2﹣2(x1+x2)﹣2m=0,
而y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2
所以22m0,
解得m或m=2(舍),
所以直线l的方程为:y=x.
科目:高中数学 来源: 题型:
【题目】已知函数,函数,其中是自然对数的底数.
(1)求曲线在点处的切线方程;
(2)设函数(),讨论的单调性;
(3)若对任意,恒有关于的不等式成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式m-|x-2|≥1,其解集为[0,4].
(1)求m的值;
(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线经过点,倾斜角为,曲线的参数方程为(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.
(1)写出直线的极坐标方程和曲线的直角坐标方程;
(2)设直线与曲线相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距为4.且过点.
(1)求椭圆E的方程;
(2)设,,,过B点且斜率为的直线l交椭圆E于另一点M,交x轴于点Q,直线AM与直线相交于点P.证明:(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为生产一种精密管件研发了一台生产该精密管件的车床,该精密管件有内外两个口径,监管部门规定“口径误差”的计算方式为:管件内外两个口径实际长分别为,标准长分别为则“口径误差”为只要“口径误差”不超过就认为合格,已知这台车床分昼夜两个独立批次生产.工厂质检部在两个批次生产的产品中分别随机抽取40件作为样本,经检测其中昼批次的40个样本中有4个不合格品,夜批次的40个样本中有10个不合格品.
(Ⅰ)以上述样本的频率作为概率,在昼夜两个批次中分别抽取2件产品,求其中恰有1件不合格产品的概率;
(Ⅱ)若每批次各生产1000件,已知每件产品的成本为5元,每件合格品的利润为10元;若对产品检验,则每件产品的检验费用为2.5元;若有不合格品进入用户手中,则工厂要对用户赔偿,这时生产的每件不合格品工厂要损失25元.以上述样本的频率作为概率,以总利润的期望值为决策依据,分析是否要对每个批次的所有产品作检测?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆以抛物线的焦点为顶点,且离心率为.
(1)求椭圆的方程;
(2)若直线与椭圆相交于、两点,与直线相交于点,是椭圆上一点且满足(其中为坐标原点),试问在轴上是否存在一点,使得为定值?若存在,求出点的坐标及的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com