【题目】如图所示,在棱长为4的正方体中,点M是正方体表面上一动点,则下列说法正确的个数为( )
①若点M在平面ABCD内运动时总满足,则点M在平面ABCD内的轨迹是圆的一部分;
②在平面ABCD内作边长为1的小正方形EFGA,点M满足在平面ABCD内运动,且到平面的距离等于到点F的距离,则M在平面ABCD内的轨迹是抛物线的一部分;
③已知点N是棱CD的中点,若点M在平面ABCD内运动,且平面,则点M在平面内的轨迹是线段;
④已知点P、Q分别是,的中点,点M为正方体表面上一点,若MP与CQ垂直,则点M所构成的轨迹的周长为.
A.1B.2C.3D.4
【答案】D
【解析】
对于①,结合圆锥的性质,可判断其正确;对于②,结合抛物线的定义,可知其正确;对于③,取AB的中点I,BC的中点O,易证平面平面,可知当M在线段IO上时,满足题意;对于④,只需过点P作直线CQ的垂面即可,垂面与正方体表面的交线即为动点M的轨迹,求出周长,即可判断④正确.
对于①,因为满足条件的动点M是以为轴线,以为母线的圆锥与平面ABCD的交线,即圆的一部分,故①是正确的;
对于②,依题意知点M到点F的距离与到直线AB的距离相等,所以M的轨迹是以F为焦点,AB为准线的抛物线,故②是正确的;
对于③,如图(1),取AB的中点I,BC的中点O,显然,,从而可以证明平面平面,当M在线段IO上时,均有平面,即动点M的轨迹是线段IO,故③是正确的;
对于④,如图(2),依题意,只需过点P作直线CQ的垂面即可,垂面与正方体表面的交线即为动点M的轨迹.分别取,的中点R,S,由,知,易知,又,,所以平面ABRS,过P作平面ABRS的平行平面,点M的轨迹为四边形,其周长与四边形ABRS的周长相等,所以点M所构成的轨迹的周长为,故④是正确的.
因此说法正确的有4个.
故选:D.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程:在平面直角坐标系中,曲线:(为参数),在以平面直角坐标系的原点为极点、轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线:.
(1)求曲线的普通方程以及曲线的平面直角坐标方程;
(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的标准方程为,其中为坐标原点,抛物线的焦点坐标为,为抛物线上任意一点(原点除外),直线过焦点交抛物线于点,直线过点交抛物线于点,连结并延长交抛物线于点.
(1)若弦的长度为8,求的面积;
(2)求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在棱长为4的正方体中,点M是正方体表面上一动点,则下列说法正确的个数为( )
①若点M在平面ABCD内运动时总满足,则点M在平面ABCD内的轨迹是圆的一部分;
②在平面ABCD内作边长为1的小正方形EFGA,点M满足在平面ABCD内运动,且到平面的距离等于到点F的距离,则M在平面ABCD内的轨迹是抛物线的一部分;
③已知点N是棱CD的中点,若点M在平面ABCD内运动,且平面,则点M在平面内的轨迹是线段;
④已知点P、Q分别是,的中点,点M为正方体表面上一点,若MP与CQ垂直,则点M所构成的轨迹的周长为.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形ABCP中,,,,D是AP的中点,E,G,F分别为PC、CB、PD的中点,将沿CD折起,使得二面角为直二面角.
(1)证明:平面EFG;
(2)求二面角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com