精英家教网 > 高中数学 > 题目详情

【题目】魏晋时期数学家刘徽在他的著作《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为牟合方盖(如图所示),刘徽通过计算得知正方体的内切球的体积与牟合方盖的体积之比应为.若牟合方盖的体积为,则正方体的外接球的表面积为__________

【答案】

【解析】

根据已知求出正方体的内切球的体积,得到内切球的半径,根据正方体内切球的直径为其棱长,外接球的直径为其对角线,即可求解.

因为牟合方盖的体积为

又正方体的内切球的体积与牟合方盖的体积之比应为

所以正方体的内切球的体积

所以内切球的半径,所以正方体的棱长为2

所以正方体的外接球的直径等于正方体的体对角线即

所以,所以正方体的外接球的表面积为

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,证明:

2)是否存在不相等的正实数mn满足,且?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线,点上一动点,过作直线的中垂线,交于点,设点的轨迹为曲线Γ.

1)求曲线Γ的方程;

2)若过的直线与Γ交于两点,线段的垂直平分线交轴于点,求的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Keep是一款具有社交属性的健身APP,致力于提供健身教学跑步骑行交友及健身饮食指导装备购买等--站式运动解决方案.Keep可以让你随时随地进行锻炼,记录你每天的训练进程不仅如此,它还可以根据不同人的体质,制定不同的健身计划小吴根据Keep记录的20191月至201911月期间每月跑步的里程(单位:十公里)数据整理并绘制了下面的折线图根据该折线图,下列结论正确的是( ).

A.月跑步里程逐月增加

B.月跑步里程最大值出现在10

C.月跑步里程的中位数为5月份对应的里程数

D.1月至5月的月跑步里程相对于6月至11月波动性更小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.恒成立,则当取得最小值时,的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天然气已经进入了千家万户,某市政府为了对天然气的使用进行科学管理,节约气资源,计划确定一个家庭年用量的标准.为此,对全市家庭日常用气的情况进行抽样调查,获得了部分家庭某年的用气量(单位:立方米).将统计结果绘制成下面的频率分布直方图(如图所示).由于操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.若以各组区间中点值代表该组的取值,则估计全市家庭年均用气量约为(

A.6.5立方米B.5立方米C.4.5立方米D.2.5立方米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①函数上单调递减,在上单调递增;

②若函数上有两个零点,则的取值范围是

③当时,函数的最大值为0

④函数上单调递减;

上述命题正确的是_________(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖.按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示.

(Ⅰ)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有关”.

女生

男生

总计

获奖

不获奖

总计

附表及公式:

其中,

查看答案和解析>>

同步练习册答案