精英家教网 > 高中数学 > 题目详情

【题目】设函数 .
(1)求函数 上的单调递增区间;
(2)设 的三个角 所对的边分别为 ,且 成公差大于零的等差数列,求 的值.

【答案】
(1)解:由题意得

因为 ,所以

,解得

所以函数 的单调递增区间为


(2)解:由 ,得 ,所以 ,解得

成公差大于零的等差数列,得

由正弦定理可得

又由 ,则 ,即

所以

解得 ,所以


【解析】(1)利用三角恒等式变化化简函数的解析式,再根据正弦函数的单调性求得函数f(x) 在 [ 0 , π ] 上的单调递增区间。(2)由已知 f ( B ) = 0代入函数的解析式可求出B的值,再利用等差数列的性质求出a、b、c的关系,结合正弦定理整理该式得到 sin A + sin C=2,再由三角形内角和为1800 转化上式为同角的三角函数式,利用两角和差的正弦公式转化即分别可求出A、 C的角度,进而得到结果。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,四边形ACC1A1BCC1B1均为正方形,且所在平面互相垂直.

(Ⅰ)求证:BC1AB1

(Ⅱ)求直线BC1与平面AB1C1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C1 =1和C2:x2+ =1.P为C1上的动点,Q为C2上的动点,w是 的最大值.记Ω={(P,Q)|P在C1上,Q在C2上,且 =w},则Ω中元素个数为(
A.2个
B.4个
C.8个
D.无穷个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在 上的函数 满足 ,若 ,则 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若样本的平均数是,方差是,则对样本,下列结论正确的是 ( )

A. 平均数为14,方差为5 B. 平均数为13,方差为25

C. 平均数为13,方差为5 D. 平均数为14,方差为2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在平面直角坐标系 中,直线 的参数方程为 为参数).它与曲线 交于 两点.
(1)求 的长;
(2)在以 为极点, 轴的正半轴为极轴建立极坐标系,设点 的极坐标为 ,求点 到线段 中点 的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】巳知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,都有不等式f(x)+xf'(x)>0成立,若 ,则a,b,c的大小关系是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=cos2x的图象,只要把函数 的图象上所有的点(
A.向右平行移动 个单位长度
B.向左平行移动 个单位长度
C.向右平行移动 个单位长度
D.向左平行移动 个单位长度

查看答案和解析>>

同步练习册答案