【题目】如图,在直角坐标中,设椭圆的左右两个焦点分别为,过右焦点且与轴垂直的直线与椭圆相交,其中一个交点为.
(1)求椭圆的方程;
(2>已知经过点且斜率为直线与椭圆有两个不同的和交点,请问是否存在常数,使得向量与共线?如果存在,求出的值;如果不存在,请说明理由.
【答案】(1) (2)不存在常数,使得向量与共线.
【解析】试题分析:(1)由过右焦点且与轴垂直的直线与椭圆相交,其中一个交点为 ,可得 ,再根据椭圆的定义以及勾股定理列方程求得 从而得 ,进而可得椭圆的标准方程;(2)直线的方程为与椭圆方程联立,可得,由,解得, 与共线等价于,根据韦达定理以及向量的坐标运算法则可得关于的方程,解得,从而可得结论.
试题解析:(1)由椭圆定义可知.
由题意,.
又由△可知 ,,,
又,得.
椭圆的方程为.
(2)设直线的方程为,
代入椭圆方程,得.
整理,得 ①
因为直线与椭圆有两个不同的交点和等价于,
解得.
设,则=,
由①得 ②
又③
因为, 所以.
所以与共线等价于.
将②③代入上式,解得.
因为
所以不存在常数,使得向量与共线.
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,公差为d,且0<d<1,a5≠ (k∈Z),sin2a3+2sina5cosa5=sin2a7 , 函数f(x)=dsin(wx+4d)(w>0)满足:在 上单调且存在 ,则w范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.
(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);
(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图下图①,等边三角形ABC的边长为2a,CD是AB边上的高,E,F分别是AC和BC边上的点,且满足=k,现将△ABC沿CD翻折成直二面角ADCB,如图下图②.
(1)试判断翻折后直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角BACD的正切值.
① ②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.
(1)若的坐标为,求的值;
(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,AB=1,BC=,AA1=2,E是侧棱BB1的中点.
(1)求证:A1E⊥平面AED;
(2)求二面角A﹣A1D﹣E的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com