精英家教网 > 高中数学 > 题目详情

已知函数,其中为奇函数, 为偶函数,若不等式对任意恒成立,则实数的取值范围是            .

 

【答案】

【解析】

试题分析:∵为定义在R上的偶函数,为定义在R上的奇函数,∴,又∵由,故,∴,不等式上恒成立,化简为,∵,令,则,整理得:,则由可知,单调递减,∴当时,,因此,实数的取值范围是,故答案为

考点:函数奇偶性的性质,指数函数.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•天河区三模)已知函数f(x)=
1+lg(x-1),x>1
g(x),x<1
的图象关于点P对称,且函数y=f(x+1)-1为奇函数,则下列结论:
(1)点P的坐标为(1,1);
(2)当x∈(-∞,0)时,g(x)>0恒成立;
(3)关于x的方程f(x)=a,a∈R有且只有两个实根.
其中正确结论的题号为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x),x∈R,有下列4个命题:
①若f(1+2x)=f(1-2x),则f(x)的图象关于直线x=1对称;
②f(x-2)与f(2-x)的图象关于直线x=2对称;
③若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于直线x=2对称;
④若f(x)为奇函数,且f(x)=f(-x-2),则f(x)的图象关于直线x=1对称.
其中正确的命题为
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江二模)在实数集R中定义一种运算“⊕”,对任意a,b⊕b为唯一确定的实数且具有性质:
(1)对任意a,b∈R,有a⊕b=b⊕a;
(2)对任意a∈R,有a⊕0=a;
(3)对任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函数f(x)=x⊕
1x
,则下列命题中:
(1)函数f(x)的最小值为3;
(2)函数f(x)为奇函数;
(3)函数f(x)的单调递增区间为(-∞,-1)、(1,+∞).
其中正确例题的序号有
(3)
(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江二模)在实数集R中定义一种运算“⊕”,对任意a,b∈R,a⊕b为唯一确定的实数且具有性质:
(1)对任意a,b∈R,有a⊕b=b⊕a;
(2)对任意a∈R,有a⊕0=a;
(3)对任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函数f(x)=x2
1x2
,则下列命题中:
(1)函数f(x)的最小值为3;
(2)函数f(x)为奇函数;
(3)函数f(x)的单调递增区间为(-1,0)、(1,+∞).
其中正确例题的序号有
(1)(3)
(1)(3)

查看答案和解析>>

同步练习册答案