精英家教网 > 高中数学 > 题目详情
如图2-5-19,已知PA为⊙O的切线,PO交⊙O于点B,BCPA于点C,交⊙O于点D,

图2-5-19

(1)求证:AB2=PB·BD.

(2)若PA =15,PB =5,求BD的长.

思路分析:(1)只需证△PBA∽△ABD.?

(2)在(1)的基础上,只需求AB,因此寻找ABBE的关系式,这可以通过相似三角形和勾股定理达到目的.

(1)证明:连结AD,延长PO交⊙OE,连结AE.?

BCPA,∴∠P +∠PBC =90°.?

BE为直径,?

∴∠BAE =90°,∠BAD +DAE =90°.?

∵∠DAE =∠DBE =∠PBC,∴∠P =∠BAD.?

又∵∠PAB =∠ADB,∴△PBA∽△ABD.?

=,即AB2 =PB·BD.

(2)解:∵PA为切线,∴PA2=PB·PE.?

PA =15,PB =5,∴PE =45.?

BE =40.?

∵△PBA∽△PAE,∴= ==.?

AB =x,则AE =3x.

AB2+AE2=BE2,?

x2+(3x)2=1 600,解得x2=160.?

代入AB2=PB·BD,得BD=32.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

(2007湖南,19)如图所示,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路.点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°θ90°),且,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为万元/km.当山坡上公路长度为lkm(1l2)时,其造价为万元.已知OA⊥ABPB⊥ABAB=1.5(km)

(1)AB上求一点D,使沿折线PDAO修建公路的总造价最小:

(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;

(3)AB上是否存在两个不同的点,使沿折线修建公路的总造价小于(2)中得到的最小总造价,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图2-5-19,C为⊙O直径AB的延长线上一点,过C作⊙O的切线CD,D为切点,连结AD、OD和BD,根据图中所给的已知条件(不再标注或使用其他字母,也不再添加任何辅助线),写出两个你认为正确的结论.

图2-5-19

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图a所示,某地为了开发旅游资源,欲修建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且sinθ=,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为万元/km.当山坡上公路长度为l km(1≤l≤2)时,其造价为(l2+1)a万元已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=(km).

(1)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;

(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;

(3)在AB上是否存在两个不同的点D′,E′,使沿折线.PD′E′O修建公路的总造价小于(2)中得到的最小总造价?证明你的结论.

a)

第19题图

(文)如图b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC为等边三角形,且AA1=AD=DC=2.

(1)求AC1与BC所成角的余弦值;

(2)求二面角C1-BD-C的大小;

(3)设M是BD上的点,当DM为何值时,D1M⊥平面A1C1D?并证明你的结论.

第19题图

查看答案和解析>>

同步练习册答案