精英家教网 > 高中数学 > 题目详情
已知lα,且l的方向向量为(2,m,1),平面α的法向量为(1,
1
2
,2)
,则m=______.
∵lα,且l的方向向量为(2,m,1),平面α的法向量为(1,
1
2
,2)

∴向量为(2,m,1)与平面α的法向量(1,
1
2
,2)
垂直
则(2,m,1)(1,
1
2
,2)
=2+
1
2
m+2=0
解得m=-8
故答案为:-8
练习册系列答案
相关习题

科目:高中数学 来源:2007年漳州市高中毕业班第一次质量检查数学试题(理科) 题型:044

已知曲线C:

(1)由曲线C上任一点E向x轴作垂线,垂足为F,点P分所成的比为,问:点P的轨迹可能是圆吗?请说明理由;

(2)如果直线l的一个方向向量为,且过点M(0,-2),直线l交曲线C于A、B两点,又,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:六安中学2009届高三第六次月考数学试题(理科) 题型:044

在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点Py轴作垂线段为垂足.

(1)求线段中点M的轨迹C的方程;

(2)过点Q(-2,0)作直线l与曲线C交于AB两点,设N是过点(-,0),且以为方向向量的直线上一动点,满足(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点Py轴作垂线段PP′,P′为垂足.

   (1)求线段PP′中点M的轨迹C的方程;

   (2)过点Q(-2,0)作直线l与曲线C交于AB两点,设N是过点,且以为方向向量的直线上一动点,满足O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2015届福建省高一上学期期末考试数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.

(1)求圆C1的方程;

(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;

(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?

 

查看答案和解析>>

科目:高中数学 来源:陕西省模拟题 题型:解答题

在直角坐标坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段PP′,P′为垂足,
(1)求线段PP′中点M的轨迹C的方程;
(2)过点Q(-2,0)作直线l与曲线C交于A、B两点,设N是过点(,0),且以为方向向量的直线上一动点,满足(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由。

查看答案和解析>>

同步练习册答案