1 |
2 |
科目:高中数学 来源:2007年漳州市高中毕业班第一次质量检查数学试题(理科) 题型:044
已知曲线C:
(1)由曲线C上任一点E向x轴作垂线,垂足为F,点P分所成的比为,问:点P的轨迹可能是圆吗?请说明理由;
(2)如果直线l的一个方向向量为,且过点M(0,-2),直线l交曲线C于A、B两点,又,求曲线C的方程.
查看答案和解析>>
科目:高中数学 来源:六安中学2009届高三第六次月考数学试题(理科) 题型:044
在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段,为垂足.
(1)求线段中点M的轨迹C的方程;
(2)过点Q(-2,0)作直线l与曲线C交于A、B两点,设N是过点(-,0),且以为方向向量的直线上一动点,满足(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段PP′,P′为垂足.
(1)求线段PP′中点M的轨迹C的方程;
(2)过点Q(-2,0)作直线l与曲线C交于A、B两点,设N是过点,且以为方向向量的直线上一动点,满足(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2015届福建省高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分12分)
已知直线l:y=x,圆C1的圆心为(3,0),且经过(4,1)点.
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点A、B分别为圆C1、C2上任意一点,求|AB|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?
查看答案和解析>>
科目:高中数学 来源:陕西省模拟题 题型:解答题
在直角坐标坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点P向y轴作垂线段PP′,P′为垂足,
(1)求线段PP′中点M的轨迹C的方程;
(2)过点Q(-2,0)作直线l与曲线C交于A、B两点,设N是过点(,0),且以为方向向量的直线上一动点,满足(O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com