精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,已知底面ABCD是矩形,PA⊥平面ABCDAP=2AB=2AD=4,且EF分别是PBPC的中点。

(1)求三棱锥的体积;

(2)求直线EC与平面PCD所成角的大小(结果用反三角函数值表示).

【答案】1;(2

【解析】

1利用,转化求解即可;(2)分别以轴、轴、

轴建立空间直角坐标系,求出平面的法向量,然后利用向量的数量积求解直线与平面所成的角.

1依题意,平面

.

所以三棱锥的体积为.

(2) 分别以轴、轴、轴建立空间直角坐标系,各点坐标分别是

00440

02

由题得,,设平面PCD的法向量为

所以所以

设直线与平面所成的角为,则

直线与平面所成的角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数图像在处的切线方程;

2)证明:

3)若不等式对于任意的均成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆)的左右两个焦点分别是在椭圆上运动.

1)若对有最大值为120°,求出的关系式;

2)若点是在椭圆上位于第一象限的点,过点作直线的垂线,过作直线的垂线,若直线的交点在椭圆上,求点的坐标;

3)若设,在(2)成立的条件下,试求出两点间距离的函数,并求出的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求a的值;

(2)在(1)的条件下,若存在,使,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量(千件)的函数解析式;

2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为,再由乙猜甲刚才想的数字把乙猜的数字记为,且,若,则称甲乙“心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F1F2为双曲线b0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,且∠MF1F2=30°,圆O的方程是x2+y2=b2

1)求双曲线C的方程;

2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1P2,求的值;

3)过圆O上任意一点Q作圆O的切线l交双曲线CAB两点,AB中点为M,求证:|AB|=2|OM|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数x和任意,恒有,则实数a的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

同步练习册答案