【题目】(本小题共13分)
如图,正方形ABCD和四边形ACEF所在的平面互相垂直。
EF//AC,AB=,CE=EF=1
(Ⅰ)求证:AF//平面BDE;
(Ⅱ)求证:CF⊥平面BDF;
【答案】(共13分)
证明:(Ⅰ)设AC于BD交于点G。因为EF∥AG,且EF=1,AG=AG=1
所以四边形AGEF为平行四边形
所以AF∥EG
因为EG平面BDE,AF平面BDE,
所以AF∥平面BDE
(Ⅱ)连接FG。因为EF∥CG,EF=CG=1,且CE=1,所以平行四边形CEFG为菱形。所以CF⊥EG.
因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.
【解析】
证明:(1)设AC与BD交于点G.
因为EF∥AG,
且EF=1,AG=AC=1,
所以四边形AGEF为平行四边形.
所以AF∥EG.
因为EG平面BDE,AF平面BDE,
所以AF∥平面BDE.
(2)连接FG.
因为EF∥CG,EF=CG=1,且CE=1,
所以四边形CEFG为菱形.
所以CF⊥EG.
因为四边形ABCD为正方形,所以BD⊥AC.
又因为平面ACEF⊥平面ABCD,
且平面ACEF∩平面ABCD=AC,
所以BD⊥平面ACEF.所以CF⊥BD.
又BD∩EG=G,所以CF⊥平面BDE.
科目:高中数学 来源: 题型:
【题目】如图所示,使用纸板可以折叠粘贴制作一个形状为正六棱柱形状的花型锁盒盖的纸盒.
(1)求该纸盒的容积;
(2)如果有一张长为60cm,宽为40cm的矩形纸板,则利用这张纸板最多可以制作多少个这样的纸盒(纸盒必须用一张纸板制成).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若命题p:函数y=x2﹣2x的单调递增区间是[1,+∞),命题q:函数y=x﹣ 的单调递增区间是[1,+∞),则( )
A.p∧q是真命题
B.p∨q是假命题
C.非p是真命题
D.非q是真命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知不等式的解集为(1,t),记函数.
(1)求证:函数y=f(x)必有两个不同的零点;
(2)若函数y=f(x)的两个零点分别为,,试将表示成以为自变量的函数,并求的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于x的一元二次方程,其中a,b是某范围内的随机数,分别在下列条件下,求上述方程有实根的概率.
(1)若随机数a,b∈{1,2,3,4,5,6};
(2)若a是从区间[0,5]中任取的一个数,b是从区间[2,4]中任取的一个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年度车辆发生道路交通事故的情况相联系.发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和费率浮动比率表 | ||
浮动因素 | 浮动比率 | |
A1 | 上一个年度未发生有责任道路交通事故 | 下浮10% |
A2 | 上两个年度未发生有责任道路交通事故 | 下浮20% |
A3 | 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
A4 | 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
A5 | 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
A6 | 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | A1 | A2 | A3 | A4 | A5 | A6 |
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5 000元,一辆非事故车盈利10 000元.且各种投保类型的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有6辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆车,求这2辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com