精英家教网 > 高中数学 > 题目详情
8.不等式2x(3-x)≥0的解集是(  )
A.(-∞,-2]∪[3,+∞)B.[2,3]C.(-∞,0]∪[3,+∞)D.[0,3]

分析 直接利用二次不等式的解法求解即可.

解答 解:不等式2x(3-x)≥0对应方程的根为:0,3;
可得表达式的解集为:[0,3].
故选:D.

点评 本题考查二次不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在菱形ABCD中,∠DAB=60°,E为AD的中点,正方形DBFG所在平面与平面ABCD垂直.
(1)求证:BE⊥平面BCF;
(2)求直线AF与平面BCG所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}与{bn}中,a1=$\frac{3}{2}$,an•an+1-2an+1=0(n≥2),an•bn-bn=1.
(1)求证:数列{bn}是等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设0<a<$\frac{1}{2}$,则1-a2,1+a2,$\frac{1}{1-a}$,$\frac{1}{1+a}$按从小到大的顺序排列为$\frac{1}{1+a}$<1-a2<1+a2<$\frac{1}{1-a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C的圆心在坐标原点O,直线1的方程为x-y-2$\sqrt{2}$=0.
(1)若圆C与直线1相切.求圆C的标准方程;
(2)若圆C上恰有两个点到直线1的距离是1,求圆C的半径的取值范囤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求与直线5x-3y+3=0平行,且与直线5x-3y+3=0的距离为$\sqrt{17}$的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线C:y2=2px(p>0)的准线为x=-2,过点(0,-2)的直线l与抛物线C交于M,N两点,且线段MN的中点的横坐标为2,则直线l的斜率为(  )
A.2或-1B.-1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设一直线上三点A,B,P满足$\overrightarrow{AP}$=λ$\overrightarrow{PB}$(λ≠-1),O是平面内任意一点,则用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OP}$式子为(  )
A.$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ$\overrightarrow{OB}$B.$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$
C.$\overrightarrow{OP}$=$\frac{1}{λ}$$\overrightarrow{OA}$+$\frac{1}{1+λ}$$\overrightarrow{OB}$D.$\overrightarrow{OP}$=$\frac{1}{1+λ}$$\overrightarrow{OA}$+$\frac{λ}{1+λ}$$\overrightarrow{OB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2$\sqrt{3}$sin($\frac{π}{4}$+$\frac{x}{2}$)sin($\frac{π}{4}$-$\frac{x}{2}$)-sin(π+x),且函数y=g(x)的图象与函数y=f(x)的图象关于直线x=$\frac{π}{4}$对称.
(1)若存在x∈[0,$\frac{π}{2}$),使等式[g(x)]2-mg(x)+2=0成立,求实数m的最大值和最小值
(2)若当x∈[0,$\frac{11π}{12}$]时不等式f(x)+ag(-x)>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案