精英家教网 > 高中数学 > 题目详情
已知函数f(x)=mx-2lnx-
mx
(m∈R)

(1)若f'(1)=2,求m的值;
(2)若函数y=f(x)在[1,+∞)上为单调函数,求m的取值范围.
分析:(1)求出原函数的导函数直接由f'(1)=2列式求m的值;
(2)求出原函数的导函数,由函数y=f(x)在[1,+∞)上为单调函数,得其导函数[1,+∞)上大于等于0或小于等于0恒成立,然后利用基本不等式求解m的取值范围.
解答:解:(1)f′(x)=
mx2-2x+m
x2
,由已知,f'(1)=m-2+m=2,
所以m=2;
(2)若函数y=f(x)在[1,+∞)上为单调函数,则在[1,+∞)上
f′(x)=
mx2-2x+m
x2
≥0
恒成立,或f′(x)=
mx2-2x+m
x2
≤0
恒成立
m≥
2x
x2+1
,或m≤
2x
x2+1
对x∈[1,+∞)恒成立,
因为
2x
x2+1
=
2
x+
1
x

而当x∈[1,+∞)时,x+
1
x
∈[2,+∞),故
2x
x2+1
∈(0,1]

所以m≥1或m≤0.
即m的取值范围是m≥1或m≤0.
点评:本题考查了函数的单调性和导数的关系,训练了利用基本不等式求函数的最值,考查了分离变量法,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m-
22x+1
是R上的奇函数,
(1)求m的值;
(2)先判断f(x)的单调性,再证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)已知函数f(x)=(m+
1
m
)lnx+
1
x
-x
,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性;
(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q(x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-
1
1+ax
(a>0且a≠1,m∈R)
是奇函数.
(1)求m的值.
(2)当a=2时,解不等式0<f(x2-x-2)<
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m•3x-1
3x+1
是定义在实数集R上的奇函数.
(1)求实数m的值;
(2)若x满足不等式4x+
1
2
-5•2x+1+8≤0
,求此时f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(sinx+cosx)4+
1
2
cos4x
x∈[0,
π
2
]
时有最大值为
7
2
,则实数m的值为
 

查看答案和解析>>

同步练习册答案