精英家教网 > 高中数学 > 题目详情
17.执行如图所示的程序框图,输出S的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,先求k的值,进而得解S的值.

解答 解:模拟程序的运行,可得
k=1
k=2
不满足条件k>4,执行循环体,k=3
不满足条件k>4,执行循环体,k=4
不满足条件k>4,执行循环体,k=5
满足条件k>4,退出循环,计算并输出S=sin$\frac{5π}{6}$=$\frac{1}{2}$.
故选:C.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.对于定义域为R的函数f(x),若存在非零实数x0,使函数f(x)在(-∞,x0)和(x0,+∞)上与x轴均有交点,则称x0为函数f(x)的一个“界点”.则下列四个函数中,不存在“界点”的是(  )
A.f(x)=x2+bx-1(b∈R)B.f(x)=|x2-1|C.f(x)=2-|x-1|D.f(x)=x3+2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=$\sqrt{{x}^{2}+1}$-x在[1,+∞)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线l与双曲线x2-4y2=4相交于A、B两点,若点P(4,1)为线段AB的中点,则直线l的方程是x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,左顶点到直线x+2y-2=0的距离为$\frac{{4\sqrt{5}}}{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C相交于A、B两点,若以AB为直径的圆经过坐标原点O,试探究:点O到直线AB的距离是否为定值?若是,求出这个定值;否则,请说明理由;
(Ⅲ)在(2)的条件下,试求△AOB面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l过点P(-1,2),且倾斜角的余弦值为$\frac{\sqrt{2}}{2}$.
(1)求直线l的一般式方程;
(2)求直线l与坐标轴围成的三角形绕y轴在空间旋转成的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.a,b,c分别是△ABC内角A,B,C的对边,a+c=4,sinA(1+cosB)=(2-cosA)sinB,则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)判断f(x)的单调性,并求f(x)的极值;
(Ⅱ)求证:当x≥1时,$\frac{(x+1)(1+lnx)}{x}$≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(a+b,$\sqrt{3}$a-c),$\overrightarrow{n}$=(sinC,sinA-sinB),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(1)求角B的大小
(2)若A=$\frac{π}{6}$,角B的平分线与AC边交于点D,且BD=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案