精英家教网 > 高中数学 > 题目详情

【题目】2017101日,为庆祝中华人民共和国成立68周年,来自北京大学和清华大学的6名大学生志愿者被随机平均分配到天安门广场运送矿泉水、打扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有1名北京大学志愿者的概率是.

(1)求打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率;

(2)设随机变量ξ为在维持秩序岗位服务的北京大学志愿者的人数,求ξ的分布列和均值.

【答案】(1);(2)见解析

【解析】

(1)先根据条件求北京大学志愿者人数,再根据古典概型概率公式求结果,(2)先确定随机变量取法,再求对应概率,列表得分布列,最后根据数学期望公式求期望.

(1)至少有1名北京大学志愿者被分到运送矿泉水岗位为事件A,则事件A的对立事件为没有北京大学志愿者被分到运送矿泉水岗位,设有北京大学志愿者x名,1≤x<6,那么P(A)=1-,解得x=2,即来自北京大学的志愿者有2名,来自清华大学的志愿者有4名.

打扫卫生岗位恰好有北京大学、清华大学志愿者各1为事件B,则P(B)=

所以打扫卫生岗位恰好有北京大学、清华大学志愿者各1名的概率是.

(2)在维持秩序岗位服务的北京大学志愿者的人数ξ服从超几何分布,其中N=6,M=2,n=2,于是

P(ξk)=k=0,1,2,

P(ξ=0)=

P(ξ=1)=

P(ξ=2)=.

所以ξ的分布列为

E(ξ)=2/3

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图ABCD是平面四边形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的长;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ln(x2﹣4x+3)的单调减区间为(  )

A. (2,+∞) B. (3,+∞) C. (﹣∞,2) D. (﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴与短轴之和为6,椭圆上任一点到两焦点 的距离之和为4.

(1)求椭圆的标准方程;

(2)若直线 与椭圆交于 两点, 在椭圆上,且 两点关于直线对称,问:是否存在实数,使,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,假命题为(  )

A. 存在四边相等的四边形不是正方形

B. z1z2C,z1z2为实数的充分必要条件是z1z2互为共轭复数

C. xyR,且xy>2,则xy至少有一个大于1

D. 对于任意nN都是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且 ,S20=17,则S30为(
A.15
B.20
C.25
D.30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上数字是1,3张卡片上数字是2,2张卡片上数字是3.从盒中任取3张卡片.

(1)求所取3张卡片上数字完全相同的概率;

(2)已知取出的一张卡片上数字是1,求3张卡片上数字之和为5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数, =2.71828…).

(1)当时,过点作曲线的切线,求的方程;

(2)当时,求证;

(3)求证:对任意正整数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足递推式

(1)求a1a2a3

(2)若存在一个实数,使得为等差数列,求;

(3)求数列{}的前n项之和.

查看答案和解析>>

同步练习册答案