精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}的前n项和为Sn,5a4+4a5=-22,S6=2a4-5
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{{a_n}-2}}-n$,求数列{bn}的前n项和Tn

分析 (1)利用等差数列的通项公式及其前n项和公式列出方程,解出a1,d,解出即可得出.
(2)${b_n}={2^{{a_n}-2}}-n$=$(\frac{1}{2})^{n}$-n,再利用等差数列与等比数列的前n项和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,
∵5a4+4a5=-22,S6=2a4-5,
∴$\left\{\begin{array}{l}{5({a}_{1}+3d)+4({a}_{1}+4d)=-22}\\{6{a}_{1}+\frac{6×5}{2}d=2({a}_{1}+3d)-5}\end{array}\right.$,解得a1=1,d=-1.
∴an=1-(n-1)=2-n.
(2)${b_n}={2^{{a_n}-2}}-n$=$(\frac{1}{2})^{n}$-n,
∴数列{bn}的前n项和Tn=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n(n+1)}{2}$=$1-\frac{1}{{2}^{n}}$-$\frac{n(n+1)}{2}$.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ax+b的图象经过A(-1,2)、B(3,6)两点.
(1)求a、b的值;
(2)如不等式f(x)>0的解集为A,f(x)≤5的解集为B,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将二进制数110 101(2)转为七进制数,结果为104(7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)log363-2log3$\sqrt{7}$;                  
(2)$\root{3}{a}$•$\root{3}{{a}^{7}}$÷a6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对抛物线y=4x2,下列描述正确的是(  )
A.开口向右,焦点为(1,0)B.开口向上,焦点为(0,1)
C.开口向上,焦点为(0,$\frac{1}{16}$)D.开口向右,焦点为($\frac{1}{16}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\left\{\begin{array}{l}x+2{\;}^{\;}(x<0)\\{x^2}{\;}^{\;}{\;}^{\;}(0≤x<2)\\ \frac{1}{2}x{\;}^{\;}{\;}^{\;}(x≥2)\end{array}\right.$.
(1)求f(f(2))的值
(2)画出此函数的图象.
(3)若f(x)=2,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于直线2x-y=2与直线x+2y=1的关系,正确的说法是(  )
A.重合B.相交但不垂直C.垂直D.平行

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>b,b>0)的渐近线方程为y=±x,且经过点$(\sqrt{2},1)$,则该双曲线的方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若F1,F2是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的两个焦点,P是双曲线上的点,且|PF1|•|PF2|=32,试求△F1PF2的面积.

查看答案和解析>>

同步练习册答案