精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)当时,求函数在点处的切线方程;

(2)当时,令函数,若函数在区间上有两个零点,求实数的取值范围.

【答案】(1)切线方程为;(2)实数的取值范围是.

【解析】【试题分析】(1)当时,求出切点和斜率,利用直线方程点斜式可求得切线方程.(2)先化简得到.利用导数求得其最小值为,由此得到在区间上有两个零点的条件是,解这个不等式求得的范围.

【试题解析】

(1)当时, .

时, ,所以点

,因此.

因此所求切线方程为.

(2)当时,

.

因为,所以当时,

且当时, ;当时,

处取得极大值也即最大值.

,所以在区间上的最小值为

在区间上有两个零点的条件是

所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】祖暅是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原理:“幂势既同,则积不容易.”这里的“幂”指水平截面的面积.“势”指高,这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。于是可把半径相等的半球(底面在下)和圆柱(圆柱高等于半径)放在同一水平面上,圆柱里再放一个半径和高都与圆柱相等的圆锥(锥尖朝下),考察圆柱里被圆锥截剩的立体,这样在同一高度用平行平面截得的半球截面和圆柱中剩余立体截得的截面面积相等,因此半球的体积等于圆柱中剩余立体的体积.设由椭圆所围成的平面图形绕轴旋转一周后,得一橄榄状的几何体(如图,称为“椭球体”),请类比以上所介绍的应用祖暅原理求球体体积的做法求这个椭球体的体积.其体积等于________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此中元素的含量不小于18毫克时,该产品为优等品.

(1)试用样品数据估计甲、乙两种产品的优等品率;

(2)若从甲、乙两种产品的优等品中各随机抽取1件,抽到的2件优等品中,“甲产品的含量28毫克优等品必须在内,且乙产品的含量28毫克优等品不包含在内”为事件,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手车交易市场对某型号二手汽车的使用年数与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

售价

16

13

9.5

7

4.5

(1)试求关于的回归直线方程;(参考公式:.)

(2)已知每辆该型号汽车的收购价格为万元,根据(1)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的方程是,曲线的参数方程是为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求直线与曲线的极坐标方程;

(2)若射线与曲线交于点,与直线交于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直角坐标系中动点,参数,在以原点为极点、轴正半轴为极轴所建立的极坐标系中,动点在曲线上.

(1)求点的轨迹的普通方程和曲线的直角坐标方程;

(2)若动点的轨迹和曲线有两个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调区间;

(Ⅱ)若函数有两个极值点,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅原理也就是“等积原理”,它是由我国南北朝杰出的数学家祖冲之的儿子祖暅首先提出来的,祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.已知,两个平行平面间有三个几何体,分别是三棱锥、四棱锥、圆锥(高度都为),其中:三棱锥的底面是正三角形(边长为),四棱锥的底面是有一个角为的菱形(边长为),圆锥的体积为,现用平行于这两个平行平面的平面去截三个几何体,如果截得的三个截面的面积相等,那么,下列关系式正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

同步练习册答案